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Why study GRF?

• Determine how much people like ”Assistance to poor” politics, vs
”Welfare” politics;

• ”Assistance to poor” = ”Welfare”, but ”Welfare” usually associated
to laziness in USA

High heterogeneity: for more liberal and
poorer the effect is 0.25; for more

conservative and richer the effect is 0.4
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It would be amazing if we could partition the covariate space X1− X2
based on the heterogeneity of treatment effects (CATE) as displayed in
Fig.1

Figure: X1− X2 ideally divided into regions according to τ(X )

Federico Nutarelli (IMT Lucca) GRF (Lecture) Applied Data Science 5 / 32



...however, we cannot observe the counterfactuals directly, which prevents
us from computing the τi .

Hence, we cannot employ a random forest directly to partition the
covariate space based on τi (no training examples).
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• the naive approach: train two random forests to create predictions for
labels Y 0 and labels Y 1, say Ŷ RF (W = 1,X = x) and
Ŷ RF (W = 0,X = x) for a treatment assignment W

• Take the difference of the two predictions to create:

τ̂RF = Ŷ RF (W = 1,X = x)− Ŷ RF (W = 0,X = x)︸ ︷︷ ︸
WRONG

Why WRONG? Because we used he same data to decide how to
partition into leaves and how to estimate mean values within each leaf
−→ OVERFITTING.

Sounds familiar?

Honesty
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We want an unbiased estimator of τi (i.e. E[τ̂i ] = τi ), with small standard
errors to avoid tiny regions:

Generalized Random Forests (GRF) try to achieve these goals
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Generalized Random Forests (GRF): aim

GRF are causal forests

General aim

Generalize classical random forests for estimating θ(x) by minimizing a
moment condition as follows:

E[ψθ(x),ν(x)(Oi )|X = x ] = 0 for all x ∈ X

where ψ(.) is a scoring function and ν(x) a nuisance parameter

Example of ψ(.)? Maximum Likelihood Estimation:

ψθ(x),ν(x)(O) = ∇log(fθ(x),ν(x)(Oi ))

where fθ(x),ν(x) is the conditional distribution of Oi on Xi .
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In other words, our objective is to identify a splitting criterion that
maximizes heterogeneity while minimizing the expected value of the
scoring function.

In order to achieve this, Athey et al. (2018) retain certain aspects of
traditional random forests, such as recursive partitioning, sub-sampling,
and random split selection.

However, they depart from the notion that the final estimate is an average
of the leaf members. More specifically, they consider forests as a form of
adaptive nearest neighbors by intelligently defining weights (outlined
below).
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How are splits chosen? (Practice)

The process begins by drawing a random subsample from the complete
dataset, without replacement.
This subsample is used to create a single root node. The root node is then
divided into child nodes, and this division is repeated recursively to
construct a tree.
The procedure terminates when no further nodes can be split.
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The main difference between GRF’s approach to growing trees and that of
classic random forests is in how the quality of a split is measured.

With causal effect estimation, the goodness of a split relates to how
different the treatment effect estimates are in each node

Theoretical foundations for such splitting strategy in next slides...
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How are splits chosen? (Theory)

Set up

• Oi = {Yi ,Wi} where Yi is the outcome and Wi the exogenous
treatment

• Define αi (x) as being similarity weights measuring the relevance of
the i th training example to fitting θ(.) at x

Then:

when the above expression has a unique root, we can say that (θ̂(x), ν̂(x))
solves

∑n
i=1 αi (x)ψθ̂(x),ν̂(x)(Oi ) = 0 being ψ(.) some scoring function.
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How are splits chosen? (Theory)

How are weights αi determined?
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How are splits chosen? (Theory)

Formally:

For regression trees:

• Aim: estimate θ(x) = µ(x) = E[Yi |Xi = x ] (Notice: reg. trees
estimate the labels Yi and not the causal effect θ(x))

• ψµ(x)(Yi ) = Yi − µ(x)
• µ̂(x) ∈ argminµ

( ∥∥∑n
i=1 αi

(
Yi − µ(x)

)∥∥
2

)
• take empirical version of ∥.∥2 and minimize it as∑n

i=1 =
1
B

∑B
b=1 αbi (x)(Yi − µ̂(x)) = 0, which implies

µ̂(x) = 1
B

∑B
b=1 µ̂b(x) where µ̂b(x) is the prediction made by a single

CART regression tree.
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How are splits chosen? (Theory, pt.2)

Aim: Finding trees that when combined into a forest induce weights αi (x)
leading to good estimates of θ(x).

Splitting rule: splitting to maximize heterogeneity
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In other words...

• we start with an estimate of θ(x) given by (θ̂P , ν̂P);

• we then try to improve the latter more and more at each split. How?

• minimizing err(C1,C2), which accounts not only for the probability
that X ∈ Cj but also for the error θ̂Cj

− θ(X )

Would be great to find an axis align split minimizing err(C1,C2) at every
split!

PROBLEM: we do not observe θ(X )!−→ another big difference w.r.t.
regression trees (where the aim was prediction and the error is
defined on the observed Yi).

We need to ri-elaborate the target criterion
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Hence, we can consider splits that make the above ∆-criterion
large! (enters with minus sign).

Federico Nutarelli (IMT Lucca) GRF (Lecture) Applied Data Science 18 / 32



Gradient tree algorithm

PROBLEM −→ optimizing ∆(C1,C2) while finding θ̂C1, θ̂C2 is
computationally expensive).
SOLUTION −→ optimizing an alternative criterion ∆̃(C1,C2) build using
gradient approximations of θ̂C1, θ̂C2,

θ̃C = θ̂P −
1

|{i : Xi ∈ C}|
∑

{i :Xi∈C}

ξTA−1
P ψθ̂P ,ν̂P

(Oi )

.

• AP −→ gradient of ψθ̂P ,ν̂P
(Oi );

• ξTA−1
P ψθ̂P ,ν̂P

(Oi ) −→ influence function of the i th observation for
computing θP in the parent
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What is θ̃C? 2 semi-formal ways

Two ways-
to explain

Remember that θ̂C =

argminθ

{∣∣∣∣∣∣∣∣∑{i∈J:Xi∈C} ψθ,ν(Oi )

∣∣∣∣∣∣∣∣
2

}
. Being an

argminθ it can be approximated using sub-gradient

methods. Specifically: θt+1 = θt − γ∇ψθ̂t ,ν̂t In our

scenario, θt+1 is the θ of the next node, i.e. the

θ of the child, while θt is the θ of the previous

node (the parent). So: θC = θP − γ∇ψθ̂P ,ν̂P where

γ = 1
{i :Xi∈C}

∑
{i :Xi∈C} ξ

T

It can be shown that for a general estimator

ϕ(P), an approximation using influence func-

tion can be found as ϕ(P) ≈ ϕ(P0)+E[IF (X )]

being IF (X ) an influence function. In our set-

up, θ̃C = ϕ(P) and θ̂P = ϕ(P0)
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From now on we can assume (following Athey, 2018) that the latter is
simply a gradient approximation of θ̂C .

What we should really care about, however, is why do we need a
gradient approximation of θ̂?

• if we wanted to optimize ∆(C1,C2) while finding θ̂C1, θ̂C2 we should
have computed not only ∆(.) for each possible split but also θ̂C1, θ̂C2

with (4) since they also appear as part of ∆(.) (see highlighted part
in slide 37)

• to avoid computing θ̂C1, θ̂C2 with (4) for every possible split we can
re-write θ̂C with its gradient approximation and apply a recursive
algorithm that avoids the calculation of θ̂C1, θ̂C2 with (4) for every
possible split (see next slides to see how *)
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How sub-gradient definition of θ̂ is useful: pt.1

Algorithmically , the above splitting scheme can be divided in

2 main Steps :

• Labeling step: Compute θ̂P , ν̂P ,A
−1
p and build pseudo-outcomes

(sort of new yi ):

ρi = −ξTA−1
P ψθ̂P ,ν̂P

(Oi ) ∈ R

• Regression step: run a CART regression split on ρi , i.e. split P in
C1 and C2 to maximize

∆̃(C1,C2) =
2∑

j=1

1

|{i : Xi ∈ Cj}|
(

∑
{i :Xi∈Cj}

ρi )
2

Once we have executed the regression step, we relabel observations in each
child by solving the estimating equation, and continue on recursively.
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How sub-gradient definition of θ̂ is useful: pt.2

The idea is to re-formulate the problem of estimating θC in a prediction
problem. This is done by labeling the observations with ρi which contains
θ̂, and consider the problem as a regression problem solvable with CART.

Example: say we have 3 observations {1, 2, 3} with associated ρ1, ρ2, ρ3.
For the sake of simplicity assume that ρ ∈ [0, 1] (not always the case). In
particular say: ρ1 = 0, ρ2 = 0, ρ3 = 1. We first label observations
according to ρ.
We want to maximize heterogeneity and to do so we should maximize
consider all possible partitions of {1, 2, 3} observations in C1 and C2 by
maximizing ∆̃(C1,C2) (see next slide)
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How sub-gradient definition of θ̂ is useful: pt.3
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How sub-gradient definition of θ̂ is useful: pt.3

Compute ∆̃(C1,C2) for any possible permutation, e.g.: 1) ∆̃(C1,C2) =
1
2 ,

. . . 4) ∆̃(C1,C2) = 1, . . . , 6) ∆̃(C1,C2) =
1
2 .

Case 4) maximizes −→ we pick up the split provided by 4).
We then proceed recursively using C as new parent node:

• Compute θ̂C , ν̂C using (4) (where P = C now); ←− KEY: we
compute it once!*21

• Attribute pseudo-outcomes ρi (constructed using θ̂C , ν̂C ) to
observations

• apply regression step

Hence we compute θ̂C1 and θ̂C2 only once (not for every permutation).
Notice: The key to do that was defining θ̃C which allowed to define ∆̃(.)
and to apply a less computationally expensive algorithm.
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R-learners

• What are R-learners? R-learners are part of ”meta-learners” which are
algorithms leveraging on machine-learning predictive power to
estimate a treatment effect τ(·);
• In the case of R-learners, let e(x) = P[W = 1|X = x ] and

m(x) = E[Y |X = x ], the idea is to estimate them using ML and
adopt their estimate to find τ̂(·)
• GRF can be seen as an implementation of R-learners.
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Recap on R-learners

• Assuming unconfoundedness, overlap (η < e(x) ≤ 1− η), and
SUTVA (treating one unit does not affect others), Robinson (1988)
found the following decomposition (regression):

Yi −m(Xi ) = (Wi − e(Xi ))τ
∗(Xi ) + ϵi

• Goal of the R-learner? Find ˆτ(·) minimizing:

L(τ) = E[{(Yi −m(Xi ))− τ(Xi )(Wi − e(Xi ))}2]

Optimal τ(·) is τ∗(·)
Why minimize L(τ) and not something else? (see next slide)
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It can be shown that

L(τ)− L(τ∗) = E[(τ(Xi )− τ∗(Xi ))
2 · (Wi − e(Xi ))

2]

hence by overlap (start from overlap and perform smart multiplications):

η2E[(τ(Xi )− τ∗(Xi ))
2] ≤ R(τ) ≤ (1− η)2E[(τ(Xi )− τ∗(Xi ))

2]

i.e. we showed that the R-learner must minimize the difference between
τ(X ) and τ∗(X ).
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R-learner finds τ̂(·) based on 2 steps:

1. Use any ML method to estimate ê(X ) and m̂(X )

2. Minimize L̂(τ) to find τ̂(·), i.e. the ˆτ() minimizing

L̂(τ) =
n∑

i=1

((Yi − m̂(Xi )) · τ(Xi )(Wi − ê(Xi ))
2 + Λn

where Λn is a general regularizer.
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GRF as R-learners in R-package

Causal forests as implemented in grf is motivated by the R-learner.

i. Concretely grf package starts by creating estimates ê(·) and m̂(·) via
regression forests.

ii. It makes out-of-bag predictions (predictions are average outputs from
trees whose training data, by honesty, did not include the i th

observation, i.e. a (−i)), i.e. we solve

E[αiψθ(x),ν(x)(Oi )|X = x ] = 0 for all x ∈ X

where ψ(·) is taken from R-learner. The key difference from
R-learners is the forest weighting αi , i.e.:

τ̂(x) =

∑n
i=1 αi(x)(Yi − m̂(−i)(Xi ))(Wi − ê(−i)(Xi ))∑n

i=1 αi(x)(Wi − ê(−i)(Xi ))2
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Quick comments:

• In the formula above, the x in τ(x) is the target test point;

• αi , therefore is computed as we have seen:

on the test point x
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