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IV quick recap

If you have specific concerns, please send me an email.
I will provide you here some general tricks/guidance:

• The weak instrument bias tends to get worse as we add more weak in-
struments. In other words, the bias gets worse when there are many
overidentifying restrictions (many instruments compared to endogenous
regressors). By construction adding further instruments without predic-
tive power reduces the value of F and the bias goes up (2SLS gets worse);

• If you have many potential IV, choose the best instrument and report the
just identified model (weak instrument problem is less problematic in that
case)

Let’s move to R where we will pick up a famous problem from Angrist and
Krueger(1991): on economic returns to schooling.
In practice it is always difficult to find convincing instruments (in particular
satisfying the exclusion restriction).
The influential study of Angrist and Krueger 1991 used quarter of birth as an
IV for schooling. Most states want student to enter school in the calendar year
in which they turn 6.
Group A: children born in the 4th quarter enter school shortly before they
turn 6;
Group B: children born in the 1st quarter enter school at a round age 6.5.
Law requires students to remain in school only until their 16th birthday.
Therefore A and B will have different ages when they start school and thus
different lengths of schooling at the time they turn 16 when they can potentially
drop out...

Clarifications on Panel data models and assump-
tions

In its more general form, the true (= unknown) dgp of a panel looks like this:

Yit = β0 + β1Xit + ziγ + δt+ uit, i = 1, . . . , N t = . . . , T (1)

where, usually, N >> T .
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Notation: The most common notations that you can find for panel data mod-
els include:

• The most specific notation: see Eq.(1)

• The broad notation for a general individual i: yi =


yi1
yi2
. . .
yiT

 ;Xi =


xi,11 . . . xi,k1

xi,12 . . . xi,k2

xi,1s . . . xi,ks

xi,1T . . . xi,kT


where k is the number of regressors. Notice that in some textbooks the
pedex i is omitted. This means, implicitly, that the values of the X is
different for each i. For instance:

Xi =


x11 . . . xk1

x12 . . . xk2

x1s . . . xks

x1T . . . xkT

 ; . . . ;Xj =


w11 . . . wk1

w12 . . . wk2

w1s . . . wks

w1T . . . wkT


• The stacked notation:

y = Xβ + α+ u

In balanced panel data, y is an NT×1 vector as well as α. X is an NT×k
matrix and β ∈ k × 1.
In unbalanced panel data we will have Ti for individual i rather than T
since each individual is observed for a different amount of time. This
means that, for instance y ∈

∑
i Ti × 1 (notice that if Ti is equal for all

individulals, i.e. the panel is balanced, than
∑

i Ti = NT ).

The 3 main panel data models are:

• Pooled OLS (POLS);

• Random Effects (RE);

• Fixed Effects (FE)

• First Difference (FD), less used

As you might know, Pooled OLS simply treat panels as large cross sections of
individuals (so that individual i observed at time t is considered as a different
observation from i observed at time s). FE and FD just differ from each other for
the quantity that they subtract to y, x, u. Namely, FE subtract the temporal
mean (mean taken over individuals) while FD subtracts the period before to
each individual. While the formulas are equivalent (compact notation), i.e.:

∆y = β∆X +∆u

, if we decompose FE, we will have:

yit − yi = (Xit −Xi)β + uit − ui
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(where αi is cancelled out since αi = αi), and in FD,

yit − yi,t−1 = (Xit −Xi,t−1)β + uit − ui,t−1

, (where αi is cancelled out since αi is time independent, i.e. αi,t = αi,s ∀t, s)

General intuition of the various models is given at the blackboard.

Conditions for Unbiasedness and consistency of POLS, RE, FE and
FD: For you to remember: consistency of an estimator means that as the
sample size gets large the estimate gets closer and closer to the true value of
the parameter. Unbiasedness is a finite sample property that is not affected
by increasing sample size. An estimate is unbiased if its expected value equals
the true parameter value.
Let’s put all the interesting assumptions that you might have encountered below
and the let’s try to attribute them to each model:

a. Linearity: yit = β0 + β1xit1 + β2xit2 + · · · + βkxitk + αi + uit −→ we
could have included also a time dependent term δt but we can get rid of
it by including time dummies in the model!

b. Random sample in cross sections (no unobserved correlation among indi-
viduals);

c. E[uit|Xis, αi] = 0. Now this is called general exogeneity assumption.
This assumption is strict if we have the validity for present, past and
future time, i.e. E[uit|Xis, αi] = 0 for s = 1, . . . T . Another weaker
form of exogeneity is called sequential exogeneity which is valid for only
present and future values of s. In other words, E[uit|Xis, αi] = 0 for
s = t, t+ 1, . . . T .
The exogeneity assumption is central to decide between FE/FD and RE
as we will see.

d. No perfect collinearity: there are no variables in X that are perfect
linear combination one of the other. You might have seen this as requiring
that the rank of X is full.

e. We must have some time variation in our explanatory variable X. In
other words, X must be time dependent. Why? Otherwise, if it is only
individual dependent FE would eliminate it!

f. Cov(αi, Xis) = 0

g. Homoskedasticity
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h. Non-autocorrelation of the errors. In other words it is undesirable to
have errors made like this: uit = β1ui,t−1 + . . . βsui,t−s + ξit. As we
will see, FD can handle a specific type of non-autocorrelation, i.e. when
uit = ui,t−1 + ξit, i.e. the error is a random walk. For other cases we have
to turn to panel GLS techniques (not covered).

Assumptions from a. to d. and h. are required by all panel model, i.e. POLS,
FE, FD, RE. Assumption e. is require only for FD and FE. Assumption f. is
required only for POLS and RE (as αi appears in the error term). Assumption
g. is required only for POLS.
Tab.(1) summarizes the above:

POLS FE FD RE
a. Yes Yes Yes Yes
b. Yes Yes Yes Yes
c. Yes Yes Yes Yes
d. Yes Yes Yes Yes
e. No Yes Yes No
f. Yes No No Yes
g. Yes No No No
h. Yes Yes Yes∗ Yes

∗ unless uit is a random walk.
If the required assumptions are met then POLS will be consistent and unbiased.
FE and FD will be consistent and unbiased for N −→ ∞ and fixed T . Notice
that, RE instead is consistent but not unbiased because is in itself a feasible
generalized least squares (we have to estimate λ̂ rather than considering it as
given).

Choosing between Pooled OLS and FE/RE: As we have seen above,
there are six assumptions for simple linear regression models that must be
fulfilled. Two of them can help us in choosing between Pooled OLS and FE/RE.
Again, these assumptions are (1) Linearity, (2) Exogeneity, (3) Homoskedasticity
and (3) Non-autocorrelation, (4) Independent variables are not Stochastic and
(5) No Multicolinearity. If assumption (2) or (3) (or both) are violated, then
FE or RE might be more suitable.

Choosing between FE and RE: Answering this question depends on your
assumption, if the individual, unobserved heterogeneity is a constant or a ran-
dom effect (i.e. it belongs to the error term). Specifically, if we see the model
as

yit = xitβ + (αi + uit)

, if αi is correlated with xit then RE (and POLS) are inconsistent and we have
to use FE provided that strict exogeneity holds. What if strict exogeneity
does not hold but sequential exogeneity does? Unfortunately neither of the
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panel techniques (FE, RE, FD and POLS) can be used!
But this question can also be answered perfoming the Hausman-Test.
As you have seen in IV, the Hausman-Test is a test of endogeneity. By running
the Hausman-Test, the null hypothesis is that the covariance between IV(s)
and alpha is zero. If this is the case, then RE is preferred over FE. If the null
hypothesis is not true, we must go with the FE-model.
In other words, in Eq.(1), if we assume for the moment that δ = 0 and γ = 1,
we are testing if the error νit = uit + zi correlates with Xit or not.

Pooled OLS (quick look)

Pooled OLS model assumes that the panel model looks like this:

Yit = βXit + uit, i = 1, . . . , N t = . . . , T

If uit is uncorrelated with Xit (see assumptions above) we can estimate β con-
sistently through OLS.
To do inference based on the conventional OLS estimator of the covariance ma-
trix, we need to assume homoskedasticity and no serial correlation in the data.
Both of these assumptions can be restrictive, especially the latter one. As a rule
of thumb, it is a good idea to obtain an estimate of the covariance matrix that is
robust to heteroskedasticity and autocorrelation, using the following sandwich
formula:

V (β̂POLS) =

(∑
i

XiX
′
i

)(−1)(∑
i

Xiûiû
′
iX

′
i

)(−1)(∑
i

XiX
′
i

)(−1)

Random Effects (deep overview)

Let’s re-write the model for convenience in this way:

yit = xitβ + (αi + uit)

The very important assumptions for the model to work are the ones in the Table
above. However, I will list the key ones below:

• αi uncorrelated with xit

• Strict exogeneity

Consider using POLS in this case. It is straightforward to show that POLS is
inefficient since the residual νPOLS = αi + uit is serially correlated:

E[νPOLS
it , νPOLS

it−s ] = E[(αi + uit)(αi + uit− s)] =

E[α2
i + αiuit + αiuit−s + uituit−s] =

∗

E[α2
i ] = σ2

α ̸= 0
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∗ this follows from the assumption of non autocorrelation of uit.
This implies that

corr(νPOLS
it , νPOLS

it−s ) =
σ2
α

σ2
α + σ2

u

If we are concerned with efficiency, we may want to consider a GLS estima-
tor that takes this serial correlation into account. Also note that if σ2

α is high
relative to σ2

u the serial correlation in the residual will be high. As a result the
conventional estimator of the covariance matrix for the OLS estimator will not
be correct.
RE is a GLS estimator solving the above problems! Using GLS involves trans-
forming the original equation, so that the transformed equation fulfills the as-
sumptions underlying the classical linear regression model. In other words we
want to manipulate the original equation so that it satisfies the OLS
assumptions (in particular no serial correlation of errors). We will
transform the model and use OLS on the transformed model.
The panel data model is

yit = xitβ + (αi + uit)

Define a

λ = 1−
( σ2

u

Tσ2
α + σ2

u

)(1/2)

Multiply λ by the individual average of the original equation:

yit − λyi = (xit − λxi)β + (νRE
it − λνRE

i )

Using OLS on this, the transformed equation, gives the random effects GLS
estimator. This estimator is efficient, because (νRE

it − λνRE
i ) is serially uncor-

related (not proved here, just compute E[(νRE
it − λνRE

i ), (νRE
it−s − λνRE

i )])!
The parameter λ is unknown a priori. This means that we have to estimaate
its components, i.e. σ2

u and σ2
α. There are various ways of doing this. The

simplest, perhaps, is to use POLS in the first stage to obtain estimates of the
composite residual ν̂it. Based on this, we can calculate σ2

α as the covariance
between ν̂it and ν̂it−1 (see above the intuition). And, by definition:

σ̂2
u = σ̂2

ν + σ̂2
u

Summarizing, to estimate λ we have a 2 steps procedure:

i. Estimate λ̂ via POLS or FE. This means that you estimate the equation
via, say, FE and you get α̂. after you got it, you compute σ̂2

α.

ii. Use POLS on the transformed equation: yit− λ̂yi = (xit− λ̂xi)β+(νRE
it −

λ̂νRE
i )

This is usually done automatically in softwares.
Notice: if λ = 1 we obtain FE (this happens when the denominator of λ,
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σ2
α −→ ∞ meaning that αi matters a lot and we have to eliminate it). If λ = 0

(this happens when σ2
α = 0, i.e. αi is unimportant and since uit is uncorrelated

with Xit, we can apply OLS) we obtain POLS.
Considerations: in RE we allow for time constant variables in X, but this means
that we no longer get the nice property of eliminating the unobserved hetero-
geneity αi.

Fixed Effects (few suggestions)

Assumptions:

1. αi freely correlate with xit

2. E[xituis] = 0 s = 1, . . . , T

1. an 2. ensure consistency of FE. If 2. does not hold, we might turn to
dynamic panels to find instruments for xit.
Notice that FD requires for 2. a weaker exogeneity condition, i.e.: E[xituis] =
0 s = t, t − 1 (e.g. we do not require that E[xitui,t−2] = 0). This is because
FD only subtracts t− 1 values!

FE or FD? First of all, when T = 2 (i.e. we have only two time periods),
FE and FD are exactly equivalent and so in this case it does not matter which
one we use (try to prove this). But when T ≥ 3, FE and FD are not the same.
Under the null hypothesis that the model is correctly specified, FE and FD will
differ only because of sampling error whenever T ≥ 3. Hence, if FE and FD
are significantly different - so that the differences in the estimates cannot be
attributed to sampling error - we should worry about the validity of the
strict exogeneity assumption.
If uit is a random walk (uit = ui,t−1 + ξit), then ∆uit is serially uncorrelated
(∆uit = uit − ui,t−1 = ξit, where ξit is noise) and so the FD estimator will be
more efficient than the FE estimator.
Conversely, under ”classical assumptions” (this is why FE is usually more
employed), i.e. uit ∼ iid(0, σ2

u), the FE estimator will be more efficient than the
FD estimator (as in this case the FD residual ∆uit will exhibit negative serial
correlation, since intuitively ∆uit = uit − ui,t−1 and ∆uit−1 = uit−1 − ui,t−2 so
that each ui,t−1 appears in the two with opposite sign making them negatively
correlated. This did not matter when uit was a random walk as we had uit −
ui,t−1 = ξit and uit−1 − ui,t−2 = ξit−1, being ξit and ξit−1 uncorrelated since
they are pure noise!).

What if both αi and δt appear in the model?

In this case we have to adopt time dummies.
Be sure to check for strict exogeneity to be present!
Furthermore think in terms of the transformed model.
I cannot say more on the topic (Professor told me so).
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R command

fe <-plm(y~x, data=panel_df,model="within",index=c("id","tt"))

re <-plm(y~x, data=panel_df,model="random",index=c("id","tt"))

Notice that in order for the models to work, we need some time variability.
Go to R exaample.

Clarifications on Logit and Probit

Unfortunately we have not enough time to cover them properly.
The key points are however summarized in the previous pdf that I send you. In
case you need further clarifications, just send me an email.
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