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Introduction

A major current challenges in data science concerns:

1. Optimizing the acquisition costs (time and money) of big data
to create novel opportunities for data analysts (Sivarajah et
al., 2017).

Can we collect less data to reach the same desired statistical
properties?
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Overview

RQ: is having "many but bad" examples always worse –in terms of
minimization of the generalization error– than having "few but
good" examples in a balanced fixed effects context with correlated
errors?
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Main model
Fixed Effects GLS (FEGLS) output model taken from Wooldridge
(2010) work 10:

yn,t := ηn + β′xn,t , for n = 1, . . . , N, t = 1, . . . , T , (1)

Outputs yn,t are unavailable directly. Only noisy measurements
zn,t are available:

zn,t := yn,t + εn,t , for n = 1, . . . , N, t = 1, . . . , T , (2)

εn,t identically distributed and εn,t ⊥̸⊥ εn,s . We assume strict
exogeneity of the explanatory variables conditional on ηn
(Wooldridge, 2010). Notice that:

X =


X1
X2
...

XN

 , where Xn =


x ′

n,1
x ′

n,2
...

x ′
n,T

 and xn,t = ([xn,t,1 . . . xn,t,p])′

being xn,t the vector of features for unit n at time t.
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▶ How are errors correlated?

▶ An AR(1) model is assumed (Bhargava et al., 1982; Im et al.,
1999):

Λ := σ2Ψ := Var (εn) = E{εnε′
n} =

= σ2


1 ρ ρ2 · · · ρT−2 ρT−1

ρ 1 ρ ρ2 · · · ρT−2

ρ2 ρ 1 ρ · · · ρT−3

· · · · · · · · · · · · · · · · · ·
ρT−1 ρT−2 · · · ρ2 ρ 1

 ∈ RT×T , (3)

Λ matrix is

symmetric

positive semi-definite

idempotent

positive-definite

eigenvalues multiplicity
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After demeaning (Appendix) the resulting covariance matrix
E{ε̈nε̈′

n}–being ε̈ the demeaned error term– has the expression

Ω := σ2Φ := Var (ε̈n) = E{ε̈nε̈′
n} = QTE{εnε′

n}Q′
T =

= QT ΛQ′
T = σ2QT ΨQ′

T , (4)

Ω matrix is

symmetric
positive semi-definite

idempotent
positive-definite
eigenvalues multiplicity
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PROBLEM:
Matrix (4) is rank deficient
(rank(Ω) = T − 1 < T ).
Cannot be inverted.

These produce the same
estimate of β

(a) project Eq. (2) onto L
(set of vectors orthogonal to 1T ) (b)
apply ordinary GLS

SOLUTIONS:

1. drop one of
the time peri-
ods from the
analysis (see,
e.g. Im et al.,
1999, Theo-
rem 4.3)

2. Use the
Moore-
Penrose pseu-
doinverse of
Ω, denoted as
Ω+ (a)
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Definition 1
Generalization error or expected risk for the i th unit (i = 1, ..., N),
conditioned on the training input data,

Ri
(
{xn,t}

t=1,...,T
n=1,...,N

)
:=E

{(
η̂i,FEGLS + β̂

′

FEGLS
x test

i − ηi − β′x test
i

)2 ∣∣{xn,t}
t=1,...,T
n=1,...,N

}
(5)

Notice that Ri is defined on test data being a performance index.

In the next slides we will rewrite Ri conveniently.
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Details on computations leading to the following expression of Ri
are reported in the paper. Here it is worth noticing that the
generalization error can be split into 6 components, namely:

Ri

({
xn,t
}t=1,...,T

n=1,...,N

)
=

= σ2

T 2 1′
T Xi

(
N∑

n=1

Ẍ ′
nΦ+Ẍn

)−1

X ′
i 1T + σ2

T 2 1′
T Ψ1T

− 2σ2

T 2 1′
T Xi

(
N∑

n=1

Ẍ ′
nΦ+Ẍn

)−1

Ẍ ′
i Φ+QT Ψ1T

+ σ2E

{(
x test

i
)′

(
N∑

n=1

Ẍ ′
nΦ+Ẍn

)−1

x test
i

∣∣∣∣∣{xn,t
}t=1,...,T

n=1,...,N

}

− 2σ2

T 1′
T Xi

(
N∑

n=1

Ẍ ′
nΦ+Ẍn

)−1

E
{

x test
i
}

+ 2σ2

T (QT Ψ1T )′ Φ+Ẍi

(
N∑

n=1

Ẍ ′
nΦ+Ẍn

)−1

E
{

x test
i
}

, (6)
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In the work we derived a large-sample approximation of (6) with
respect to T, for fixed N, which has its major applications in
macroeconometrics.
The large-sample approximation is based on the following major
results (see paper for the assumptions under which they hold):

▶

plim
T→+∞

1
T 1′

T Xi =
(
E
{

x i ,1
})′

, (7)

▶

plim
T→+∞

1
T Ẍ ′

i Φ+QT Ψ1T = 0p . (8)

▶ If lim
T→∞

∥Φ+ − QT Ψ−1Q′
T ∥2 = 0 holds, then

plim
T→+∞

1
T

N∑
n=1

Ẍ ′
nΦ+Ẍn = AN , (9)
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nΦ+Ẍn = AN , (9)



9/ 15

In the work we derived a large-sample approximation of (6) with
respect to T, for fixed N, which has its major applications in
macroeconometrics.
The large-sample approximation is based on the following major
results (see paper for the assumptions under which they hold):
▶

plim
T→+∞

1
T 1′

T Xi =
(
E
{

x i ,1
})′

, (7)

▶

plim
T→+∞

1
T Ẍ ′
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nΦ+Ẍn = AN , (9)



10/ 15

When (7)-(8)-(9) hold, then we can write the large-sample
approximation of the generalization error Ri

({
xn,t

}t=1,...,T
n=1,...,N

)
w.r.t.

T as:

(6) ≃ σ2

T
(
E
{

x i ,1
})′

A−1
N E

{
x i ,1

}
+ σ2

T
1 + ρ

1 − ρ

+σ2

T E
{(

x test
i
)′ A−1

N x test
i

}
− 2σ2

T
(
E
{

x i ,1
})′

A−1
N E

{
x test

i
}

= σ2

T

(
1 + ρ

1 − ρ
+ E

{∥∥∥∥A− 1
2

N

(
E
{

x i ,1
}

− x test
i

)∥∥∥∥2

2

})
, (10)

Blue and cyan terms of (6) disappear due to (8).
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Time to optimize...

Aim: Optimize (10) when

σ2 = kc−α

being c ∈ [cmin, cmax ] the cost per example with upper
bound C on total supervision cost NTc. T ∈ [ C

cmax
, . . . , C

cmin
].

Idea: The higher the cost per example, the greater
the precision of supervision.

Scenarios:
1. "decreasing returns to scale∗": 0 < α < 1
2. "increasing returns to scale∗": α > 1
3. "constant returns to scale∗": α = 1

∗ of the precision with respect to the cost per example
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Can we further simplify the analysis?

Actual optimization problem:

minimize
c∈[cmin,cmax]

Kik
c−α⌊

C
Nc

⌋ . (11)

However...

Folllowing Gnecco and Nutarelli (2019[4]), the objective function of
the optimization problem (11), rescaled by the multiplicative factor
C, can be approximated, with a negligible error in the maximum
norm on [cmin, cmax], by NKikc1−α.
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Figure 1: Plots of the rescaled objective functions CKi k c−α
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Final optimization problem

minimize
c∈[cmin,cmax]

NKikc1−α , (12)

whose optimal solutions c◦ have the following expressions:
1. if 0 < α < 1 (“decreasing returns of scale”): c◦ = cmin;
2. if α > 1 (“increasing returns of scale”): c◦ = cmax;
3. if α = 1 (“constant returns of scale”): c◦ = any cost c in the

interval [cmin, cmax].

Notice: No assumptions of the probability distribution of the input
examples is needed!
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Demeaning step
Common practice in F.E.: eliminate unobserved individual
heterogeneity (ηn in Eq. (1)). How?

De-meaning using QT ∈ RT×T

where

QT := IT − 1
T 1T 1′

T

QT matrix is

symmetric
positive semi-definite
idempotent

positive-definite
eigenvalues multiplicity
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Proof of Eq.(7), sketch

plim
T→+∞

1
T 1′

T Xi =
(
E
{

x i ,1
})′

,

Proof.
i) Replace the empirical average of x ′

n,t with the common
expected value1

ii) Apply Chebyshev’s weak law of large numbers.

1since E
{

x i,t
}

is the same ∀t we arbitrarily chose t = 1.
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Proof of Eq.(8), sketch

plim
T→+∞

1
T Ẍ ′

i Φ+QT Ψ1T = 0p .

Proof.
▶ Step 1: define vT := Q′Φ+QΨ1T = Q′Φ+uT
▶ Step 2: rewrite the argument of the plim using vT :

1
T Ẍ ′

i Φ+QΨ1T = 1
T X ′

i Q′Φ+QΨ1T = 1
T X ′

i

▶ Step 3: Notice that in 1
T X ′

i is a weighted average with
weights vT → some law of large number must apply (Bai,
Cheng,and Zhang (1997, Theorem 2.1));

▶ Step 4: check if vT and 1
T X ′

i satisfy the requirements of Bai,
Cheng,and Zhang (1997, Theorem 2.1) (they do)
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Proof of Eq.(9), sketch

plim
T→+∞

1
T

N∑
n=1

Ẍ ′
nΦ+Ẍn = AN ,

Proof.
▶ Step 1: prove that Ẍ ′

nΦ+Ẍn = X ′
nQ′Φ+QXn = X ′

nΦ+Xn =
X ′

n
[
Φ+ − QΨ−1Q′]Xn + X ′

nQΨ−1Q′Xn .;
▶ Step 2: prove that plim

T→+∞

1
T X ′

n
[
Φ+ − QΨ−1Q′]Xn = 0p×p .;

▶ Step 3: prove that plim
T→+∞

1
T X ′

nQΨ−1Q′Xn =

1+ρ2

1−ρ2E
{(

xn,1 − E
{

xn,1
})(

xn,1 − E
{

xn,1
})′
}

.;

▶ Step 4: Combine Steps 1,2 and 3. Then sum over N.
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Set-up for simulations

For each c, an empirical approximation of the generalization
error is computed:

N∑
i=1

E
{(

η̂i,FEGLS + β̂
′

FEGLS
x test

i − ηi − β′x test
i

)2 ∣∣{xn,t}
t=1,...,T
n=1,...,N

}

≃ 1
Ntest

N∑
i=1

Ntest
i∑

h=1

1
N tr

N tr∑
j=1

(
η̂j

i,FEGLS +
(

β̂
j
FEGLS

)′
x test

i,h − ηi − β′x test
i,h

)2

.(13)

(13) is based on N tr training sets and Ntest
i test examples for each

unit i (i = 1, . . . , N), hence on a total number Ntest =
∑N

i=1 Ntest
i

of test examples.2

2Can provide further details at the end of the discussion
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Details on simulations set-up

Fair comparison (since T depends on c):
▶ The number of rows in each matrix Xn is increased when c is

reduced from cmax to cmin, by increasing the number of
observations T .

▶ For a fair comparison, when doing this, the rows already
present in each matrix Xn are kept fixed.

▶ Finally, the same test examples (generated independently
from the training sets) are used to assess the performance of
the fixed effects generalized least squares estimates for
different costs per example c.
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We choose:
1. N = 20,
2. p = 5 (for the number of features),
3. cmin = 2, cmax = 4,
4. N tr = 100 (for the number of training sets),
5. Ntest

i = 50 for the number of test examples per unit (hence
the total number of test examples is Ntest = 1000)

The number of training examples per unit is T = 50 for c = cmin,
and T = 25 for c = cmax.3 Without loss of generality, the
constant k of the variance of the supervision cost is assumed to be
equal to 1.

3In this way, the (upper bound on the) total supervision cost is C = 2000
for both cases.
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The components of β are generated randomly and independently
according to a uniform distribution on [−1, 1]:

β = [−0.8562, 0.6837, 0.2640, −0.0038, −0.0598]′ . (14)

The fixed effects ηn (for n = 1, . . . , N) are generated similarly for
each unit;

For both training and test sets, the input data associated with
each unit are generated as realizations of a multivariate Gaussian
distribution with mean 0 and covariance matrix
Var

(
xn,t

)
= Var (x test

i ) = AxA′
x , where the elements of

Ax ∈ Rp×p have been randomly and independently generated
according to a uniform probability density on the interval [0,1].



9/ 23

References I

Corporate governance of big data: Perspectives on value, risk,
and cost Tallon, Paul P., Computer, volume 46, number 6
pages 32–38, 2013, IEEE

Big Data Tools: Advantages and Disadvantages Baig, Maria
Ijaz and Shuib, Liyana and Yadegaridehkordi, Elaheh, Journal
of Soft Computing and Decision Support Systems, volume 6,
number 6 pages 14–20, 2019

On the trade-off between number of examples and precision of
supervision in regression problems, Gnecco G., Nutarelli, F.
(2019) in Proceedings of the 4th International Conference of
the International Neural Network Society on Big Data and
Deep Learning (INNS BDDL 2019), Sestri Levante, Italy, pp.
1-6.



10/ 23

References II

On the trade-off between number of examples and precision of
supervision in machine learning problems., Gnecco G.,
Nutarelli, F. (2019) Optimization Letters. https:// doi. org/
10. 1007/ s11590- 019- 01486-x.

Optimal trade-off between sample size and precision of
supervision for the fixed effects panel data model., Gnecco G.,
Nutarelli, F. (2020). In Proceedings of the 5th International
Conference on machine Learning, Optimization Data science
(LOD 2019), Certosa di Pontignano (Siena), Italy. Lecture
Notes in Computer Science, vol. 11943, pp. 1-12.

Optimal trade-off between sample size, precision of
supervision, and selection probabilities for the unbalanced fixed
effects panel data model. Gnecco, G., Nutarelli, F., Selvi, D.
(2020). Soft Computing, 24, 15937–15949.



11/ 23

References III

Optimal data collection design in machine learning: the case of
the fixed effects generalized least squares panel data model.
Gnecco, G., Nutarelli, F. and Selvi, D., 2021. Machine
Learning, pp.1-36.

Econometric analysis of cross section and panel data.
Wooldridge, J.M., 2002. MIT press. Cambridge, MA, 108.

Big data: New tricks for econometrics. Varian, H.R., 2014.
Journal of Economic Perspectives, 28(2), pp.3-28.

Machine learning methods that economists should know
about. Athey, S. and Imbens, G.W., 2019. Annual Review of
Economics, 11, pp.685-725.

Daron Acemoglu and Joshua Linn. Market size in innovation:
theory and evidence from the pharmaceutical industry. The
Quarterly journal of economics, 119(3):1049–1090, 2004.



12/ 23

References IV

Zeina Alsharkas. Firm size, competition, financing and
innovation. International Journal of Management and
Economics, 44(1):51–73, 2014.

Ram Bala, Pradeep Bhardwaj, and Pradeep K Chintagunta.
Pharmaceutical product recalls: Category effects and
competitor response. Marketing Science, 36(6):931–943, 2017.

Natarajan Balasubramanian and Jeongsik Lee. Firm age and
innovation. Industrial and Corporate Change,
17(5):1019–1047, 2008.

George Ball, Jeffrey Thomas Macher, and Ariel Dora Stern.
Recalls, innovation, and competitor response: Evidence from
medical device firms. 2018.



13/ 23

References V

Margaret E Blume-Kohout and Neeraj Sood. Market size and
innovation: Effects of medicare part d on pharmaceutical
research and development. Journal of public economics,
97:327–336, 2013.
Bowe C.Merck quarterly profits hit by vioxx recall, 2005.
[Online; accessed 15-April-2021].

Rodrigo A Cerda. Endogenous innovations in the
pharmaceutical industry. Journal of Evolutionary Economics,
17(4):473–515, 2007.

Jessie Cheng. An antitrust analysis of product hopping in the
pharmaceutical industry. Colum. L. Rev., 108:1471, 2008.

Abdulkadir Civan and Michael T Maloney. The effect of price
on pharmaceutical r&d. The BE Journal of Economic Analysis
Policy, 9(1), 2009.



14/ 23

References VI

Joseph A DiMasi, Ronald W Hansen, and Henry G Grabowski.
The price of innovation: new estimates of drug development
costs. Journal of health economics, 22(2):151–185, 2003.

Pierre Dubois, Olivier De Mouzon, Fiona Scott-Morton, and
Paul Seabright. Market size and pharmaceutical innovation.
The RAND Journal of Economics, 46(4):844–871, 2015.

Mark Duggan and Fiona Scott Morton. The effect of medicare
part d on pharmaceutical prices and utilization. American
Economic Review, 100(1):590–607, 2010.

M.Provost et al. Pharmaceutical antitrust law in european
union. Dechert LLP, 2019.
Paul A Geroski and Chris F Walters. Innovative activity over
the business cycle. The Economic Journal, 105(431):916–928,
1995.



15/ 23

References VII

Carmelo Giaccotto, Rexford E Santerre, and John A Vernon.
Drug prices and research and development investment behavior
in the pharmaceutical industry. The Journal of Law and
Economics, 48(1):195–214, 2005.

Bronwyn H Hall and Nathan Rosenberg. Handbook of the
Economics of Innovation, volume 1. Elsevier, 2010.
Kelsey Hall, Tyler Stewart, Jongwha Chang, and Maisha Kelly
Freeman. Characteristics of FDA drug recalls: A 30-month
analysis. American Journal of Health-System Pharmacy,
73(4):235–240, 2016.

Christian Hansen, Jerry Hausman, and Whitney Newey.
Estimation with many instrumental variables. Journal of
Business Economic Statistics, 26(4):398–422, 2008.



16/ 23

References VIII
Iraj Hashi and Nebojša Stojčić. The impact of innovation
activities on firm performance using a multi-stage model:
Evidence from the community innovation survey 4. Research
Policy, 42(2):353–366, 2013.

Venit J.S. Hawk, B.E. and Huser H.L. Recent developments in
EU merger control. antitrust. (15):24, 2000.

Elena Huergo and Jordi Jaumandreu.How does probability of
innovation change with firm age? Small Business Economics,
22(3-4):193–207, 2004.

Boyan Jovanovic. Product recalls and firm reputation.
Technical report, National Bureau of Economic Research,
2020.
Alfred Kleinknecht and Bart Verspagen. Demand and
innovation: Schmookler re-examined. Research policy,
19(4):387–394, 1990.



17/ 23

References IX

Steven Klepper and Franco Malerba. Demand, innovation and
industrial dynamics: an introduction. Industrial and Corporate
Change, 19(5):1515–1520, 2010.

Srinivas Kolluru and Pundarik Mukhopadhaya. Empirical
studies on innovation performance in the manufacturing and
service sectors since 1995: A systematic review. Economic
Papers: A journal of applied economics and policy,
36(2):223–248, 2017.

Margaret K Kyle and Anita M McGahan. Investments in
pharmaceuticals before and after trips. Review of Economics
and Statistics, 94(4):1157–1172, 2012.

Jean O Lanjouw. Patents, price controls, and access to new
drugs: how policy affects global market entry. Technical
report, National Bureau of Economic Research, 2005.



18/ 23

References X

Frank R Lichtenberg. Pharmaceutical innovation as a process
of creative destruction. Knowledge Accumulation and Industry
Evolution: The Case of Pharma-Biotech, page 61, 2006.

Wei Lin and Jeffrey M Wooldridge. Testing and correcting for
endogeneity in nonlinear unobserved effects models. In Panel
Data Econometrics, pages 21–43. Elsevier, 2019.

Chin-jung Luan, Chengli Tien, and Yi-chuang Chi. Downsizing
to the wrong size? a study of the impact of downsizing on firm
performance during an economic downturn, The International
Journal of Human Resource Management, 24(7):1519–1535,
2013.



19/ 23

References XI

Franco Malerba. Innovation and the evolution of industries. In
Innovation, Industrial Dynamics and Structural
Transformation, pages 7–27. Springer, 2007. 41 [42] Anthony
Markham. Lurbinectedin: first approval. Drugs, pages 1–9,
2020. [43] Linda Martin, Melissa Hutchens, Conrad Hawkins,
and Alaina Radnov. How much do clinical trials cost?, 2017.
Kamel Mellahi and Adrian Wilkinson.A study of the
association between level of slack reduction following
downsizing and innovation output. Journal of Management
Studies, 47(3):483–508, 2010.

David Mowery and Nathan Rosenberg. The influence of
market demand upon innovation: a critical review of some
recent empirical studies. Research policy, 8(2):102–153, 1979.



20/ 23

References XII

Igho J Onakpoya, Carl J Heneghan, and Jeffrey K Aronson.
Worldwide withdrawal of medicinal products because of
adverse drug reactions: a systematic review and analysis.
Critical reviews in toxicology, 46(6):477–489, 2016.

Ariel Pakes and Mark Schankerman. The rate of obsolescence
of patents, research gestation lags, and the private rate of
return to research resources. In R&D, patents, and
productivity, pages 73–88. University of Chicago Press, 1984.

Fabio Pammolli, Laura Magazzini, and Massimo Riccaboni.
The productivity crisis in pharmaceutical R&D. Nature reviews
Drug discovery, 10(6):428–438, 2011.

Jorge V Pérez-Rodríguez and Beatriz GL Valcarcel. Do product
innovation and news about the r&d process produce large price
changes and overreaction? the case of pharmaceutical stock
prices. Applied Economics, 44(17):2217–2229, 2012.



21/ 23

References XIII

W Price and II Nicholson. Making do in making drugs:
Innovation policy and pharmaceutical manufacturing. BCL
Rev., 55:491, 2014.
Bastian Rake. Determinants of pharmaceutical innovation: the
role of technological opportunities revisited. Journal of
Evolutionary Economics, 27(4):691–727, 2017.

David Roodman. How to do xtabond2: An introduction to
difference and system gmm in stata. The stata journal,
9(1):86–136, 2009.

Frederic M Scherer. Demand-pull and technological invention:
Schmookler revisted. The Journal of Industrial Economics,
pages 225–237, 1982.

Jacob Schmookler. Invention and economic growth. Harvard
University Press, 2013.



22/ 23

References XIV
Vishal B Siramshetty, Janette Nickel, Christian Omieczynski,
Bjoern-Oliver Gohlke, Malgorzata N. Drwal, and Robert
Preissner. Withdrawn—a resource for withdrawn and
discontinued drugs. Nucleic acids research,
44(D1):D1080–D1086, 2016.

Gregory N Stock, Noel P Greis, and William A Fischer. Firm
size and dynamic technological innovation. Technovation,
22(9):537–549, 2002.

Paul Stoneman. Soft innovation: economics, product
aesthetics, and the creative industries. Oxford University Press,
2010.
George Symeonidis. Innovation, firm size and market structure:
Schumpeterian hypotheses and some new themes 1996.

Terence N. Merck pulls vioxx painkiller from market, and stock
plunges, 2004 [Online; accessed 15-April-2021].



23/ 23

References XV

Sriram Thirumalai and Kingshuk Sinha. Product recalls in the
medical device industry: An empirical exploration of the
sources and financial consequences. Management Science,
57:376–392, 2011.
Carl H Tong, Lee-Ing Tong, and James E Tong. The vioxx
recall case and comments. Competitiveness Review: An
International Business Journal, 2009.
Anish Vaishnav. Product market definition in pharmaceutical
antitrust cases: Evaluating cross-price elasticity of demand.
Colum. Bus. L. Rev., page 586, 2011.


	Part 1
	
	
	Appendix
	Appendix

