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The order of the topics covered here is, more or less, the same argument
covered in the R script.

Overview of Logit and Probit

First of all, Probit (Logit) regression is used for binary depenents:

y =

{
0 if no

1 if yes
.

Examples for instance in labor market is whether an individual participates in
the labor market or not.
In general, binary outcome models estimate the probability that y = 1 as a
function of the independent variables:

Pr[y = 1|x] = F (x′β) (1)

In the Probit model, F (x′β) is the cdf of the standard normal distribution, i.e.:

F (x′β) = Φ(x′β) =

∫ x′β

−∞
ϕ(z)dz

The Logit model is the cdf of the logistic distribution:

F (x′β) = Λ(x′β) =
ex

′β

1 + ex′β

Notice that x′β is a quantile z such that the Probit coefficient β is the change
in z (the quantile) associated with a one unit change in x. Basically, if x changes
of one unit, how does z changes? We assume that the effect of a change of x on
z is linear. Notice however that the link between the dependent and z is not
linear because Φ(.) is not linear in x. Since the dependent variable is a nonlinear
function of the regressors, the coefficient on x has no simple interpretation.
So, how do we interpret the coefficients of the probit? In general, you
cannot interpret the coefficients from the output of a probit regression; not in
any standard way, at least.

1



Marginal effects

If you are asked, how to interpret the results of a probit (logit) directly, what
you usually would like is to assess whether an increase in x increases/decreases
the likelihood that y = 1 (makes that outcome more/less likely). In other
words, an increase in x makes the outcome of 1 more or less likely. We inter-
pret the sign of the coefficient but not the magnitude. The magnitude cannot
be interpreted using the coefficient because different models have different scales
of coefficients.
When estimating probit and logit models, it is common to report the marginal
effects after reporting the coefficients. The marginal effects reflect the change in
the probability of y = 1 given a 1 unit change in an independent variable x. In
general, in fact, you need to interpret the marginal effects of the regressors,
that is, how much the (conditional) probability of the outcome variable changes
when you change the value of a regressor, holding all other regressors constant
at some values. This is different from the linear regression case where you are
directly interpreting the estimated coefficients. This is so because in the linear
regression case, the regression coefficients are the marginal effects.
In the probit regression, there is an additional step of computation required to
get the marginal effects once you have computed the probit regression fit. This
is easy to see:

• Linear regression case: E[Y |X] = β0 +
∑

i βkXki, whose marginal effects
is βk;

• Probit model: E[Y |X] = Φ(β0 +
∑

i βkXki), whose marginal effects are
βk · Φ(β0 +

∑
i βkXki), which is not the same as the regression

coefficient!. For short, marginal effects are: Φ(x′β)βj .

• Logit model: E[Y |X] = Λ(β0+
∑

i βkXki), whose marginal effects are (for

short) Λ(x′β)[1 − Λ(x′β)]βk = ex
′β

1+ex′β · 1
1+ex′β ≈ Λ(x′β) · βj . We will use

the latter in R.

Problem: how can we compute the quantity represented by the marginal effects
and what are the choices of the other regressors that should enter this formula?
Thankfully, R provides this computation after a probit regression, and provides
some defaults of the choices of the other regressors (there is no universal agree-
ment on these defaults).
Specifically, the R procedure goes like this: The predicted probability that y = 1
given x1, x2, . . . , xk can be calculated in two steps:

1) Compute z = β0 + β1x1 + β2x2 + · · ·+ βkxk, obtaining ẑ

2) Look up Φ(ẑ) by calling pnorm().

βj is the effect on z of a one unit change in regressor xj , holding constant
all other k1 regressors.
In R, Probit models can be estimated using the function glm() from the package
stats. Using the argument ”family” we specify that we want to use a Probit
link function.

2



Odds ratios

In general, given a probability of success p (so the probability of failure is (1−p)),
the odds ratio measures the probability that y = 1 relative to the probability
that y = 0.
Now, in the Logit model, for instance, we have seen that:

p =
e(x

′β)

1 + e(x′β)

, hence:
p

(1− p)
= ex

′β

In order to simplify, we can simply take the log of the odds ratio:

log
p

(1− p)
= x′β

An odds ratio of 2, for instance, simply means that the outcome y = 1 is twice
as more likely than the outcome y = 0. Though odds ratio are important and
reported as default in many popular softwares (e.g. STATA), in economics, it
is more popular to report the marginal effects.

McFadden R2

Why do we need an alternative R2? Remember that the R-squared equals
SSRegression

SSTotal , which mathematically must produce a value between 0 and 100%.SStotal
is the total sum of squares: (yi − y)2 and SSregression is the explained sum
of squares (fi − y). In nonlinear regression, SSRegression + SSError do not
equal SSTotal! This completely invalidates R-squared for nonlinear models,
and it no longer has to be between 0 and 100%.
So we need an alternative R2 which is given by:

1− Lur/Lr

. The latter compares the unrestricted (i.e. estimated on all parameters, or in
our case, all Xs) log-likelihood Lur for the model we are estimating and the
restricted (i.e. a log-likelihood without any X) Lr with only an intercept.
If the independent variables have no explanatory power, the restricted model
will be the same as the unrestricted model and the R-squared will be 0.

Prediction

Prediction in general linear models focuses mainly on predicting the values of
the conditional mean:

E[Y |X1 = x1, . . . Xp = xp] = f(η) = f(β0 + β1x1 + . . . βpxp)
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using η̂ = β̂0+β̂1x1+. . . β̂pxp and not on predicting the conditional response (i.e.

Ŷ |X). The reason is that confidence intervals, the main difference between both
kinds of prediction (of conditional mean and of conditional response), depend
heavily on the family we are considering for the response. For instance, if we
think about it, for the logistic function the CI of the conditional response
(not the ones of the coefficients, which need to be computed!) can be only {0, 1}.
To provide you an intuition, Ŷ is a probability so stays between 0 and 1,, while
we know that CI are constructed by adding and subtracting 1.96 which would
make the CI for Ŷ larger than necessary, thus useless.
To stay with the same notation, for the logistic model, the prediction of the
conditional response follows immediately from Λ(η):

Ŷ |(X1 = x1, . . . Xp = xp) =

{
1 with probability Λ(η)

0 with probability 1− Λ(η)
.

As a consequence, we can predict Y as 1 if Λ(η) > 1 and 0 otherwise (Y
takes indeed only two values).
From this we can understand easily that type=”link” returns the η̂ directly,
i.e. η̂ = β̂0 + β̂1x1 + . . . β̂pxp which you might have heard as log-odds in the
logistic, while type=”response” returns the probabilities in the logistic, i.e.
Λ(η).
E[Y |X] can be reached as an average of the latter.
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