
Lecture Applied Data Science Part 1

Nutarelli F.

IMT School for Advanced Studies, Lucca

December 30, 2023

Outline

k-NN

k-means clustering

k Nearest Neighbors for Classification (Theory)

Key hints:

I Nearer points must be similar

I Hence the label of a point x is the same as the label of its
neighbor points

I denoting hS(x) the NN predictor...

One would like to learn from finite training samples (m) and to
understand the generalization performance as a function of the size
of such finite training sets and clear prior assumptions on the data
distribution

In other words: can we find a general rule for asymptotic
consistency as a function of m without making assumption on the
distribution of the data? −→ YES!
Simpler to study for 1-NN rule (can be generalized for k-NN)

I E
S∼Dm

[LD(hS)]− 2LD(h
?) is the error of the 1-NN rule

(where h? is the ideal, infeasible rule according to which we
should classify x as 1 when the true η(x) > 1/2 and LD(.) is
the loss function under D)

I this error is bounded by the distance between test point x and
its (unique) nearest (remember notation π1(x)) neighbor in
the training set

Let’s skip the proof of that!

PROBLEM: E
S∼Dm,x∼D

||x− xπ1(x)|| unknown!

Only way is to bound it from above. Not simple. Use a two step
procedure:

1) Step 1: bound probability weight of subsets not hit by a
random sample, i.e. such that Ci ∩ S = ∅, as a function of m
(sample size);

2) Step 2: Use step 1 to bound E
S∼Dm,x∼D

||x− xπ1(x)||

Let’s skip the proof of that!

PROBLEM: E
S∼Dm,x∼D

||x− xπ1(x)|| unknown!

Only way is to bound it from above. Not simple. Use a two step
procedure:

1) Step 1: bound probability weight of subsets not hit by a
random sample, i.e. such that Ci ∩ S = ∅, as a function of m
(sample size);

2) Step 2: Use step 1 to bound E
S∼Dm,x∼D

||x− xπ1(x)||

Let’s skip the proof of that!

PROBLEM: E
S∼Dm,x∼D

||x− xπ1(x)|| unknown!

Only way is to bound it from above. Not simple. Use a two step
procedure:

1) Step 1: bound probability weight of subsets not hit by a
random sample, i.e. such that Ci ∩ S = ∅, as a function of m
(sample size);

2) Step 2: Use step 1 to bound E
S∼Dm,x∼D

||x− xπ1(x)||

Let’s skip the proof of that!

PROBLEM: E
S∼Dm,x∼D

||x− xπ1(x)|| unknown!

Only way is to bound it from above. Not simple. Use a two step
procedure:

1) Step 1: bound probability weight of subsets not hit by a
random sample, i.e. such that Ci ∩ S = ∅, as a function of m
(sample size);

2) Step 2: Use step 1 to bound E
S∼Dm,x∼D

||x− xπ1(x)||

Step 1

Step 2

Bottom line: as m −→∞, error of 1-NN −→ 2LD(h
?).

Generalization to k-NN: as m −→∞, error of k-NN −→
1√
8/k

LD(h
?).

Crucial implication: for the last term of Theorem 19.3 to be
lower than an arbitrary ε > 0, it must be that m ≥ (4c

√
d/ε)d+1,

i.e. the size of the training set should increase exponentially with
the dimension d −→ CURSE OF DIMENSIONALITY

Step 2

Bottom line: as m −→∞, error of 1-NN −→ 2LD(h
?).

Generalization to k-NN: as m −→∞, error of k-NN −→
1√
8/k

LD(h
?).

Crucial implication: for the last term of Theorem 19.3 to be
lower than an arbitrary ε > 0, it must be that m ≥ (4c

√
d/ε)d+1,

i.e. the size of the training set should increase exponentially with
the dimension d −→ CURSE OF DIMENSIONALITY

Step 2

Bottom line: as m −→∞, error of 1-NN −→ 2LD(h
?).

Generalization to k-NN: as m −→∞, error of k-NN −→
1√
8/k

LD(h
?).

Crucial implication: for the last term of Theorem 19.3 to be
lower than an arbitrary ε > 0, it must be that m ≥ (4c

√
d/ε)d+1,

i.e. the size of the training set should increase exponentially with
the dimension d −→ CURSE OF DIMENSIONALITY

Summary and recommendations

The k-NN rule is a very simple learning algorithm that relies on the
assumption that “things that look alike must be alike.” We
formalized this intuition using the Lipschitzness of the conditional
probability. Notice: the fact that η = P[Y = 1|X = x] is
Lipschitz-continuous means that if x = xi is near to x = xj they
will have very similar P[Y = 1|X = x]

We have shown that, practically, with a sufficiently large training
set, the risk of the 1-NN is upper bounded by twice the risk of the
Bayes optimal rule.

We have also derived a lower bound that shows the “curse of
dimensionality” – the required sample size might increase
exponentially with the dimension. Recommendation: in practice
perform k-NN after a dimensionality reduction pre-processing step

Summary and recommendations

The k-NN rule is a very simple learning algorithm that relies on the
assumption that “things that look alike must be alike.” We
formalized this intuition using the Lipschitzness of the conditional
probability. Notice: the fact that η = P[Y = 1|X = x] is
Lipschitz-continuous means that if x = xi is near to x = xj they
will have very similar P[Y = 1|X = x]

We have shown that, practically, with a sufficiently large training
set, the risk of the 1-NN is upper bounded by twice the risk of the
Bayes optimal rule.

We have also derived a lower bound that shows the “curse of
dimensionality” – the required sample size might increase
exponentially with the dimension. Recommendation: in practice
perform k-NN after a dimensionality reduction pre-processing step

Summary and recommendations

The k-NN rule is a very simple learning algorithm that relies on the
assumption that “things that look alike must be alike.” We
formalized this intuition using the Lipschitzness of the conditional
probability. Notice: the fact that η = P[Y = 1|X = x] is
Lipschitz-continuous means that if x = xi is near to x = xj they
will have very similar P[Y = 1|X = x]

We have shown that, practically, with a sufficiently large training
set, the risk of the 1-NN is upper bounded by twice the risk of the
Bayes optimal rule.

We have also derived a lower bound that shows the “curse of
dimensionality” – the required sample size might increase
exponentially with the dimension. Recommendation: in practice
perform k-NN after a dimensionality reduction pre-processing step

k-means

Please do not confuse k-means and k-NN:

I k-NN is for CLASSIFICATION, i.e. y ∈ {0, 1} (given);

I k-means is for CLUSTERING i.e. no label y is given;

Clustering is a problematic task. (a) and (b) look both correct:

(a) (b)

Common setup in clustering

Common setup in clustering

Several clustering techniques out there! Examples:

I Linkage-based clustering: they start from the trivial clustering
that has each data point as a single-point cluster. Then,
repeatedly, these algorithms merge the “closest” clusters of
the previous clustering. Principal problem: define a distance
between clusters!

I Cost Minimization Clusterings. Define a cost function over a
parameterized set of possible clusterings and the goal of the
clustering algorithm is to find a partitioning (clustering) of
minimal cost. Most popular: k-means clustering.

Objective function

I The objective function is a function from pairs of an input,
(X , d), where d is a distance and a proposed clustering
solution C = (C1, ..., Ck), to positive real numbers:

G : Rn × Rk 7−→ R+,

i.e. G((X , d), C) ∈ R+ must be minimized

I The solution to such a clustering problem is determined by a
set of cluster centers ((µ1, . . . , µk)), and the clustering assigns
each instance to the center closest to it. More generally, the
center-based objective is determined by choosing some
monotonic function f : R+ 7−→ R+ and then defining

Objective function for k-means

Specification

What does it mean that centroids could belong to a superset X ′ of
X ?

Simply that, if we are given a set of points ∈ X , centroids are no
necessarily chosen over that set, but can be chosen on artificial
points /∈ X .

Example: say we are given points {1, 2, 3, 4, 5} ∈ Z+. The first
centroid could be 2.25 ∈ R+

k-means objective 6= k-means algorithm

Problem: k-means problem is NP-hard, i.e. loosely speaking, it is
computationally expensive to find its optimal solution. So?

ADOPT k-means algorithm. Notice: the outcome of this algorithm
is not necessarily the same clustering that minimizes the k-means
objective cost.

The k-means algorithm is usually based on the Euclidean distance
d(x,y) = ||x− y||

k-means objective 6= k-means algorithm

Problem: k-means problem is NP-hard, i.e. loosely speaking, it is
computationally expensive to find its optimal solution. So?

ADOPT k-means algorithm. Notice: the outcome of this algorithm
is not necessarily the same clustering that minimizes the k-means
objective cost.

The k-means algorithm is usually based on the Euclidean distance
d(x,y) = ||x− y||

k-means algorithm

k-means algorithm, Lemma

This Lemma is very important as it ensures that at every iteration
of the algorithm, the cost function G((X , d), C) does not increase.
However, the are no guarantees the global minimum is found!

Proof outline

I Define G(C
(t)
1 , . . . , C

(t)
k) as cost function at iteration t as the

function whose centroids µti minimize the distance between a

generic point x ∈ C(t)
i and µti;

I Define an auxiliary function, say

A =
∑k

i=1

∑
x∈C(t)

i

||x− µ(t−1)i || which is greater than

G(C
(t)
1 , . . . , C

(t)
k);

I Show that A ≤ G(C(t−1)
1 , . . . , C

(t−1)
k);

I exploit transitive property:

G(C
(t)
1 , . . . , C

(t)
k) ≤ A ≤ G(C(t−1)

1 , . . . , C
(t−1)
k) −→

G(C
(t)
1 , . . . , C

(t)
k) ≤ G(C(t−1)

1 , . . . , C
(t−1)
k)

Proof part 1

Proof part 2

Cons of k-means algorithm

While the preceding lemma tells us that the k-means objective is
monotonically non-increasing, there is no guarantee on the number
of iterations the k-means algorithm needs in order to reach
convergence.

k-means algorithm might converge to a point which is not even a
local minimum

Why? Example (next page)

why k-means might not converge to local minimum

Figure 1: here is the solution of the algorithm. Variability of clusters not
minimal

Figure 2: here is the solution by minimizing G(.). Variability of clusters is
minimal

Random Initialization Trap. Introduction

The fact that k-means might not converge to local minimum
highly depends on the so called Random Initialization Trap. This
leads to the use of ”kmeans++” correction.

Random initialization trap is a problem that occurs in the k-means
algorithm. In random initialization trap when the centroids of the
clusters to be generated are explicitly defined by the user then
inconsistency may be created and this may sometimes lead to
generating wrong clusters in the dataset. So the random
initialization trap may sometimes prevent us from developing the
correct clusters.

Random Initialization Trap: kmeans++ (intuition)

The intuition behind this approach is that spreading out the k
initial cluster centers µ1, . . . , µk is a good thing: the first cluster
center is chosen uniformly at random from the data points that are
being clustered, after which each subsequent cluster center is
chosen from the remaining data points with probability
proportional to its squared distance from the point’s closest
existing cluster center.

Random Initialization Trap: kmeans++ (algorithm)

I Choose one center uniformly at random among the data points

I For each data point x not chosen yet, compute d(x), the
distance between x and the nearest center that has already
been chosen

I Choose one new data point at random as a new center, using
a weighted probability distribution where a point x is chosen
with probability proportional to d(x)2, i.e. more distant
points are chosen as centers with more probability

I Repeat Steps 2 and 3 until k centers have been chosen

I Now that the initial centers have been chosen, proceed using
standard k-means clustering.

Summary
The k-means problem is to find cluster centers that minimize the
intra-class variance, i.e. the sum of squared distances from each
data point being clustered to its cluster center (the center that is
closest to it). Although finding an exact solution to the k-means
problem for arbitrary input is NP-hard, the standard approach to
finding an approximate solution is used widely and frequently finds
reasonable solutions quickly.
However, the k-means algorithm has at least two major theoretic
shortcomings:

I First, long computational time −→ adaptive search of
centroids

I Second, the approximation found can be arbitrarily bad with
respect to the objective function compared to the optimal
clustering.

The kmeans++ algorithm addresses the second of these obstacles
by specifying a procedure to initialize the cluster centers before
proceeding with the standard k-means optimization iterations.

	k-NN
	k-means clustering

