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Motivation

While it may be simple to pick a city, it is difficult to explain why.

Understanding the competitiveness of smart cities is challenging [1]

No clear
definition of
urban com-
petitiveness
([5])

(i)

Contemporary
urban land-
scapes are
characterized
not by singu-
lar, monolithic
cities, but by
diverse, multi-
centered
metropolitan
regions.

(i
i)

There is a shift
from tradi-
tional industrial
chain systems
to more dy-
namic and
unpredictable
innovation
chain systems
([6]).

(iii)

Urban com-
petitiveness
emerges from
a tapestry
of complex,
high-level
social in-
teractions,
encompassing
various factors
and innova-
tions ([4], [5]).

(iv)
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Motivation

▶ Unraveling the linkage between competitiveness of cities and their

resource allocations and capabilities [11] is crucial to understand why

some cities are more competitive, productive, or resilient than others;

▶ But why is competitiveness so important?

Cross-fertilization of ideas !

▶ In this scenario predicting the future competitiveness of global cities in

different technological areas is key;

▶ Economic complexity and machine-learning literatures provide useful

insights when combined.
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Contribution

Contribution 1.1: Data Structure

Developing a unique dataset providing insights into the eco-
nomic complexity and competitiveness of cities across different
technological domains.

Contribution 1.2: Forecasting

Developing a forecast of future capabilities of cities taking into
account high-order correlations between technologies. We em-
ployed concepts from economics complexity (Revealed Technol-
ogy Advantage, henceforth RTA) and machine-learning (Matrix
Completion, henceforth MC).



WHY CHOOSING MC?

Conceptual Reasons

▶ According to [9] and
[10], ”innovation is a
linear combination of
existing technologies”;

▶ Rows or columns of the
RTA matrix are linearly
dependent (low-rank
matrix);

▶ MC’s success depends on
the fact that the matrix
to be reconstructed is
low-rank.

Technical Reasons

▶ Previous methods –focused
on complexity– retained
only first 2 eigenvalues of a
matrix associated with a
bipartite network;

▶ MC retains n singular
values, where n is the
minimal number to
minimize out-of-bag
prediction errors!

▶ Hence MC is better for
prediction tasks.
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HOW CAN MC HELP UNCOVERING HIGH-ORDER
CORRELATIONS?

- MC reconstructs each row of a matrix by a linear combination of
”latent” factors (e.g. users’ preferences) that are extracted by MC in a
nonlinear way, using the training dataset (i.e. the way the user’s
preferences are learned from the preferences of other users is nonlinear):



Basic Notation

(i) Element RTAt
ij of Revealed Technological Advantage matrix

RTAt : city’s i nr. of patents in technology j relative to total
market share at time t;

(ii) Competitiveness matrix at time t: Mt ;

(iii) Mt+5: the incidence matrix derived by setting Mt+5
ij to 1 if

RTAt+5
ij ≥ 1, and to 0 otherwise.

AIM: Predicting future competitiveness matrix elements Mt+5

using current data Mt , with 5-year1 forecasts based on discretized
attributes from the RTA matrix RTAt , to reflect long-term
investment impacts on urban competitiveness

15 years is the estimated time needed for investments to significantly impact
the competitiveness structure of cities.
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Continent Number of Time period Number of Average employment Average net
cities patents (thousands) migration

(thousands) (thousands)

Africa 6 2000-2004 1.62 1431.78 2.52
2005-2009 1.76 1632.11 30.78
2010-2014 2.82 1759.73 38.15

Asia 45 2000-2004 1320.61 3145.15 97.21
2005-2009 1400.51 3722.14 125.21
2010-2014 1362.48 4358.46 64.87

Europe 48 2000-2004 230.21 1210.84 10.46
2005-2009 268.17 1284.38 11.72
2010-2014 269.01 1310.01 8.36

North America 34 2000-2004 476.99 2069.75 1.83
2005-2009 504.49 2136.25 2.49
2010-2014 531.18 2171.25 4.52

Oceania 7 2000-2004 11.53 956.70 11.96
2005-2009 11.77 1083.13 22.92
2010-2014 12.58 1186.06 24.11

South America 10 2000-2004 2.13 3121.41 2.86
2005-2009 3.23 3561.11 5.70
2010-2014 5.12 4011.93 11.82

Table: Descriptive statistics.



Pre-processing

▶ How? Louvain-clustering

▶ What? Identifying cities that are similar to any city i ;

▶ Why? In order to enhance the prediction power of the models by
facilitating their job;

▶ Where? In the matrix NRTAt := RTAt(RTAt)
′
∈ RCity×City , where City

is the number of cities. Number of IPC technological areas in which city i
and city j have a competitive technology in common;

▶ When? Before applying the supervised machine-learning models.



Idea of pre-processing: cluster cities by maximizing modularity

Qt = 1
2St

∑
i,j

[
Adj tij −

kti k
t
j

2St

]
δ(c tk(i), c

t
k(j)) → aggregate the so found clusters →

repeat until no more modularity gain. Below the representation of a single

iteration:

Gain in modularity:

∆Qt(i , c) =

[∑
j∈ct Adj

t
ij −

kti
∑

j∈ct ktj
2St

]
−

[∑
j∈ct

k(i)
Adj tij −

kti
∑
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k(i)

ktj
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]



Example of cluster for t = 2014:

Once the optimal partition has

been determined for every

t ∈ {2000, 2001, . . . , 2008}, we
performed a majority voting by

counting the number of times

that every pair of cities

belonged to the same cluster.



Matrix Completion (MC)

MC is used to complete a partially observed matrix. It does so by minimizing

the trade off between a data fitting term (in red) and a regularization term

(usually nuclear norm in blue).

MC models employed

minimize
Z

1
2

∑
(i,j)∈Ωtr(Aij − Zij)

2+λ∥Z∥∗

So
ft-
im
pu
te
([7

])

minimize
Z,L,Γ,∆(

1
|Ωtr|

∑
(Ai,j − Zi,j)

2 + λ∥L∥∗
)
,

subject to Z = L+ Γ1⊤ + 1∆⊤

([2]) FE

A is partially observed and reconstructed by Z. The second model introduces

Fixed Effects (FE) to reduce regularization bias optimally.



Detailed Analysis of MC Model Applications

▶ MC Models Variability: Applied with different A matrices (one for each
choice of city and year), training sets Ωtr, and regularization parameters
λ.

▶ Tr.set Construction: For each city and year, Ωtr includes 75% of row of
the 50 most similar cities (found in pre-processing). Specifically we
generated R = 500 unique training sets by randomly choosing the 75%
rows. Validation and test were chosen among remaining rows.

▶ Optimization: Identified optimal λ by minimizing Root Mean Square
Error (RMSE) on validation set Ωval.

▶ Predictive Focus: Aimed at 5-year predictions, using elements from
RTAt+5 as ground truth for minimizing RMSE.

▶ Final Testing: Applied MC for t = 2009 with the optimal λ (λ◦), which
most frequently minimized RMSE.

▶ Classifier Construction: Formed a multi-class classifier from test set
predictions; later simplified into a binary classifier.



MC vs RF

M(atrix)C(ompletion)

▶ Input: A portion of a
matrix.

▶ Training Set: Based on
specific indices.

▶ Classification: Focused
on minimizing RMSE,
with the ground truth
being values observed 5
years later.

R(andom)F(orest)

▶ Input: Feature vectors.

▶ Training Set: Based on
bootstrap sampling from
features.

▶ Classification: Based on
majority voting.
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Benchmark model: Random Forest (RF)

▶ Input Adaptation for MC and RF: Adapted inputs to ensure
comparability between MC and RF models.

▶ RF Model Features:

▶ For each city i and IPC j , a 50-dimensional feature vector is
constructed.

▶ Vector elements: Column j from matrix A, excluding the
target element.

▶ Target element (at t + 5) is used as the desired label.

▶ RF Hyperparameters: Tuned number of trees, tree depth, and split
quality criteria for optimal performance.

▶ Training and Testing:

▶ Trained RF model on similar cities (as in MC) for
t = 2000, 2001, . . . , 2008 using cross-validation to tune
hyperparameters.

▶ Applied optimal hyperparameters for t = 2009, predicting for
test set at t + 5 = 2014.



RF in our context (an example)

Training Data:
[RCA1,j ,RCA2,j , . . . ,RCA50,j ]

Sample and features bagging:

▶ Boot.1 = [RCA11,j ,RCA23,j , . . . ,RCA39,j ]

▶ Boot.2 = [RCA38,j ,RCA1,j , . . . ,RCA38,j ]
...

▶ Boot.n = [RCA29,j ,RCA30,j , . . . ,RCA44,j ]

. . .

Tree 1
Boot. 1

Tree 2
Boot. 2

Tree n
Boot. n

Majority vote (75% = 0; 25% = 1):

[0, 0, 0, 1, 0, . . . , 0, 1, 1]

prediction = 0



Results
MC by [2] with pre-processing performs better:

Random Forest
(benchmark)

Matrix Completion
(Mazumder et al., 2010)

Matrix Completion
(Athey et al., 2021)

Scenario I Avg. F1-score 0.34 0.39 0.42

Scenario II
F1-score 0.34 0.67 0.70
Precision Recall (PR) AUC 0.33 0.65 0.63
Matthew’s coefficient 0.24 0.29 0.31

alb
an

y

at
lan

ta

ba
rc

elo
na

be
lo 

ho
riz

on
te

br
at

isl
av

a
ca

iro

ch
ica

go
da

lia
n
du

ba
i

fra
nk

fu
rt 

am
 m

ain

gr
ea

te
r b

ris
ba

ne

gu
an

gz
ho

u

he
lsi

nk
i

ist
an

bu
l

ka
ra

ch
i
lim

a
lyo

n

m
an

ila
m

ila
n

m
on

tre
al

nu
re

m
be

rg

pe
na

ng

pr
ag

ue
ro

m
e

sa
n 

fra
nc

isc
o 

gr
ea

te
r
se

ou
l

sin
ga

po
re

te
lav

iv
tu

nis

war
sa

w
xia

n

A01B

A61G

B24B

B60F

C01B

C12P

E01B

F16G

F42D

G10B

H04S True Positives

True Negatives

False Positives

False Negatives

NaN The figure presents a
comparison of the
configurations of true positives
(green), true negatives (blue),
false positives (red), and false
negatives (yellow) obtained
when utilizing the RTA values
of 2014 as the ground truth in
the binary classifier derived
from MC of [2].



Rank
Predicted competitiveness
(MC, Athey et al., 2021)

Actual competitiveness
Predicted ubiquity

(MC, Athey et al., 2021)
Actual ubiquity

1st Shanghai Chongqing
A61K

Preparation for medical, dental
or toiletry purposes

A61K
Preparation for medical, dental

or toiletry purposes

2nd Chicago Guangzhou

A61P
Specific therapeutic activity of

chemical compounds or medicinal
preparations

A61P
Specific therapeutic activity of

chemical compounds or medicinal
preparations

3rd Munich Dalian
C12Q

Measuring or testing processes involving
enzymes, nucleic acids or microorganisms

C12Q
Measuring or testing processes involving

enzymes, nucleic acids or microorganisms

4th Guangzhou Chengdu
C07K

Peptides
C07K

Peptides

5th Seoul Chicago

A01N
Preservation of bodies of human

or animals or plants or
parts thereof

H02M
Apparatus for converting electrical power,

e.g., from DC to AC

6th Los Angeles Greater Shanghai
C07D

Heterocyclic compounds

C07H
Sugars; derivatives thereof; nucleosides;

nucleic acids

7th Paris Frankfurt

C12N
Microorganisms or enzymes;

compositions thereof;
mutation or genetic engineering

G01N
Investigating or analyzing materials by
determining their chemical or physical

properties

8th Atlanta Jinan

G01N
Investigating or analyzing materials by
determining their chemical or physical

properties

A61F
Filters implantable into blood vessels;

prostheses and similar devices

9th Frankfurt Milan

A61J
Containers specially adapted for medical

or pharmaceutical purposes and
similar devices

C12N
Microorganisms or enzymes;

compositions thereof;
mutation or genetic engineering

10th Tokyo Shenyang
B01D

Separation

A61L
Methods or apparatus for sterilising materials

or objects in general



Discussion & Conclusions

▶ Contribution: (i) Unique dataset; (ii) Framework for defining
competitiveness among urban cities; (iii) Prediction of future
competitiveness of global cities across technological areas without major
structural assumptions;

▶ Approach: (i) Integration of various data sources; (ii) Adoption of RTA
in a complexity framework; (iii) Integration of MC and Louvain
community detection;

▶ Performance: Superior prediction accuracy compared to benchmark
(Random Forest) under similar pre-processing;

▶ Policy Implications:

▶ Design of tailored strategic innovation policies for individual
cities;

▶ Map of future excess supply (demand) in cities;
▶ Tracing the mobility of inventors.
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