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Introduction

Main purpose: "propose strategies to estimate and make inference
on key features of heterogeneous treatment e�ects (HTE) in
randomized experiments".

Notice: not directly on HTE but on key features of HTE
including:
I Best Linear Predictor (BLP);
I Average Sorted E�ects by impact groups (GATES);
I Average characteristics of most and least impacted units

(CLAN).
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Why is ML useful in randomized experiments?

Traditional problems of the literature:

I Imbalances of the data which requires variable selection (e.g.
LASSO). Example: prediction of natural disaster, medical
datasets (e.g. more smokers than not), country datasets (e.g.
more data on developed countries)...

I Interested in how does the e�ect change according to
subgroups of population defined on characteristics (see next
slide). Example:

federico nutarelli
Accidental imbalances that cannot be foreseen if not with ML tools.

federico nutarelli

federico nutarelli

federico nutarelli
Problem: how to define such subgroups in advance?
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Assessing heterogeneity of e�ect

Pre-specified subgroups

Lot of ways to form subgroups:
researchers might lose info

Ex-post subgroups

Overfitting
+ cheating
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Idea: let the data speak and employ ML to estimate HTE directly!

Problems of estimating HTE directly with ML

While ML tools are successful in prediction empirically, it is much
more di�cult to obtain uniformly valid inference for CATE (and
hence HTE, see Yuang et al. 2008), i.e. inference that remains
valid under a large class of data generating processes (DGP) in
high dimensional settings.

People: Dude you can regularize and reduce dimensionality!
Chernuz.: No way...I wanna stay agnostic (see Agnostic property )

Workaround

Not estimating HTE directly but, rather, features of it: BLP of the
CATE on the ML proxy predictors, GATES (ATE by heterogeneity
groups induced by the ML proxy predictor), CLAN (see
Chernuzokov et al. (2019) for the R routine).
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Agnostic property

Sparsity cannot be employed for general ML tools: we must
be agnostic if we wanna stay general!
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Agnostic property (pt.2)

Super-smoothness and self-similarity cannot be employed for
general ML tools: stay agnostic!
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Basic clarifications before math

I HTE ”= CATE but CATE =∆ HTE (often): CATE is
employed to assess HTE non-parametrically (see e.g. Athey et
al., 2019).

I Why, in general, people use ML to construct proxies of CATE
rather than estimating CATE with usual econometric
techniques? Because the essence of the HTE and the CATE is
to perform a non-parametric (i.e. without making
assumptions on the underlying population) estimation
(agnostic). Moreover, (generally) econometric techniques do
not catch HTE. Why? HTE analysis often requires highly
dimensional data (n < p) which invalidates usual asymptotics.
Remember: HTE analysis looks for ◊(X) and not ◊ alone
generally. Hence, HTE analysis uses ML and CATE is
estimated non-parametrically via ML.
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Basic clarifications part 2

I Term "proxies" might be misleading. Take it as "estimations
using ML".

I Why valid inference for general DGP is di�cult using ML?
Because in high dimensional settings ML tools might produce
inconsistent estimates of CATE (ATE conditional on
covariates). Why? Intuitively think about LASSO. LASSO
selects the covariates that are more useful for prediction of Y

and not necessarily those producing consistent estimates of ◊.
I Authors look for (valid) inference and (valid) estimation for

generic ML tools. In the literature you find examples of
consistent and e�cient estimators adopting specific ML tools
(e.g. RF for Athey et al., 2016...), see again Agnostic property .
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Theory
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Framework

I Baseline Conditional Average (BCA):

b0 := E[Y (0)|Z]

I CATE:
s0 := E[Y (1)|Z] ≠ E[Y (0)|Z]

I Propensity score:

p(Z) := P [D = 1|Z]

I Observed outcome (given ANOVA):

Y = b0(Z) + Ds0(Z) + U, E[U |Z, D] = 0,

s0(Z) = E[Y |D = 1, Z] ≠ E[Y |D = 0, Z]

federiconutarelli
Text Box
This results from Y= DY(1)+(1-D)Y(0)

federiconutarelli
Pencil



13/ 54

Formalize agnostic approach

I Split the sample: (A, M) s.t. DataA =
(Yi, Di, Zi)iœA, DataM = (Yi, Di, Zi)iœM

I Stage 1: From A obtain estimates of b0(z) and s0(z) (proxy
predictors):

z æ B(z) = B(z; DataA) and z æ S(z) = S(z; DataA)

Not required consistency for S(z) and B(z)
I Stage 2: Post-process the proxies from Stage 1 to estimate

and make inference on features (BLP, GATES, CLAN) of the
CATE z æ s0(z) in the main sample M.
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We can now better formalize the features of CATE using the
notation above:

1. BLP of the CATE s0(Z) on the ML proxy predictor S(Z);
2. GATES: average of s0(Z) (ATE) by heterogeneity groups

induced by the ML proxy predictor S(Z);
3. CLAN: average characteristics of the most and least a�ected

units defined in terms of the ML proxy predictor S(Z).
Inference will account for two sources of uncertainty:

1. Estimation uncertainty conditional on the auxiliary sample;
2. Splitting uncertainty induced by random partitioning of data

into A and M .
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Results (BLP)

We want to identify and estimate a linear predictor f(Z) (i.e., s.t.
Span(1, S(Z))) of s0(z) using S(Z) (i.e., the linear function
includes S(Z)):

which is identified via 2 strategies:
I Via manipulation of the observed outcome’s equation

( Observed outcome )
I Using Horvitz-Thompson transformation (skipped here)
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BLP (First strategy)

Identify the coe�cients of the following linear projection:

Y = –
Õ
X1 + —1(D ≠ p(Z)) + —2(D ≠ p(Z))(S(Z) ≠ E[S(Z)]) (1)

Where does it come from and how can this be employed to find
BLP?



17/ 54

Let’s recover it! (my intuition ≠æ feel free to criticize)
I Start from Y = Y (0) + D(Y (1) ≠ Y (0)), where Y (1) ≠ Y (0)

is s0(Z);
I Idea: we want an f(Z), linear on S(Z) s.t. E[s0(Z) ≠ f(Z)]2

is minimized. General form of f(Z) = —1 + —2S(Z).
I Substitute the general form of f(Z) in Y and obtain:

Y = Y (0) + D(—1 + —2S(Z)) = Y (0) + D—1 + D—2(S(Z))
I Apply local centering of D and S(Z), i.e.

D ≠ E[D] = D ≠ p(Z) and S(Z) ≠ E[S(Z)] to obtain the
equation.
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Fundamental theorem:

In other words, —1 + —2(S(Z) ≠ E[S(Z)]) = BLP [s0(Z)|S(Z)].
The fact that the latter is the BLP can be shown by proving that it
solves the normal equations (not covered here). Can we show that
the optimal coe�cients are the ones shown in Th. 3.1? (see next
slide).
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My informal proof
1

=∆ Notice this: the loss function

L(Z) = E[s0(Z) ≠ f(Z)]2 = E[s0(Z) ≠ —1 + —2S(Z)]2

is a Least square loss and has the same solution as E[Y ≠ —X]2 in
linear regression.

=∆ Thus, minimizing L(Z) we would obtain the same —s
obtained as the solution of the coe�cients of the linear regression
(1), being X, in our case, represented by S(Z). In other words we
expect that:

ˆL(Z)
ˆ—1

= 0, gives us E[s0(Z)];

ˆL(Z)
ˆ—2

= 0, gives us Cov(s0(Z), S(Z))
V ar(S(Z)) c.v.d.

1Refer to the paper for a formal proof
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Results (GATES)

Target parameter:
E[s0(Z)|G]

being G an indicator for group membership (groups based upon
ML tools applied to the auxiliary data).

Impose monotonicity condition:

E[s0(Z)|G1] Æ E[s0(Z)|G2] Æ · · · Æ E[s0(Z)|GK ]
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GATES are recovered from the weighted linear projection

Y = –
Õ
X1 +

Kÿ

k=1
“k · (D ≠ p(Z)) · 1(Gk) + ‹, E[w(Z)‹W ] = 0

being W = (X Õ
1, W

Õ
2)Õ and W2 = ({(D ≠ p(Z))1(Gk)}K

k=1)Õ.
The non-overlapping groups are constructed to explain as much
variation in s0(Z) as possible.

Again: where does this weighted linear projection come from?
Two ways to reach it...(my intuition ≠æ feel free to criticize)
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1) Start from Eq. (1).
Remember that we want
E[s0(Z)|G]. Now "given G"
means that:
I We are operating within the

same group Gk ,i.e. we need
a dummy 1(Gk).

I By assumption, within the
same group the e�ect s0(Z)
is the same, hence, in Eq.
(1), S(Z) ≠ E[S(Z)] = 0
within Gk ’k œ {1, K}.

I Without
S(Z) ≠ E[S(Z)] = 0, —1
represents E[s0(Z)|G] =
“k · 1(Gk) ’k œ {1, K}.

2) Start from
Y = Y (0) + D(Y (1) ≠ Y (0)) ƒ
b0(Z) + D · s0(Z). Condition to
G: E[Y |G] ƒ
E[b0(Z)|G] + D · E[s0(Z)|G].
Now:
I E[Y0(Z)|G] ƒ

E[b0(Z)|G] = E[b0(Z)] will
only depend on X

ú and not
on the group, G, hence,
putting them all in the same
vector X1, E[b0(Z)|G] =
E[b0(Z) = –

Õ
X1.

I Define E[s0(Z)|G] =
“k · 1(Gk) ’k œ {1, K}.

I Apply local centering.
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ú This is so because groups are defined in order to maximize the
variability of s0(Z).

Hence, they are defined on the support of S(Z) (and not on the
one of B(Z), the estimator of b0(Z)).

The implicit (plausible) assumption of the authors is that the
grouping scheme(s) that maximize the variability of
s0(Z) ƒ Y (1) ≠ Y (0), do not (necessarily) influence the variability
of b0(Z) ƒ Y (0). Is the variability of the di�erence that counts
and not that of Y (0) in the scheme!

ANOVA contributes in guaranteeing so (random assignment in
treatment given Z).
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GATES (theorems)

Theorem 1

The projection coe�cients “k are the GATES parameter:

“ = (“k)K
k=1 = (E[s0(Z)|Gk])K

k=1

Proof: simply FWL theorem!

Theorem 2

Given a bunch of assumptions (see paper), “ is an e�cient
estimator of GATES, i.e.

“k = E[s0(Z)|Gk]

asymptotically.
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Results (CLAN)

When GATES reveals substantial heterogeneity it is interesting to
know the properties of most and least a�ected groups.

Call G1 the least a�ected group and GK the most a�ected
(remember monotonicity assumption).
Let g(.) be a vector of characteristics of a unit s.t.

”1 = E[g(Y, Z)|G1] and ”K = E[g(Y, Z)|GK ]

CLAN = ”K ≠ ”1
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Inference

Let ◊ be a generic target parameter of interest (e.g.: ◊ = GATES,
◊ = CLAN ...). Then:

Sources of uncertainty:

i) Uncertainty regarding ◊

conditional on data split
ii) Uncertainty in-

duced by data slitting

i): A + M is a sample and not the entire population ≠æ
uncertainty on ◊ ≠æ we can only have estimations of ◊.
ii): Di�erent partitions A and M give di�erent estimations of ◊.
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Quantifying i)

1. Parameters depend on A, specifically ◊ = ◊A;
2. An estimator ◊̂A is admitted such that:

◊̂A|DataA ≥ N (◊A, ‡̂
2
A) .

3. As a consequence, the confidence intervals (CI) are:

[LA, UA] := [◊̂A ± �≠1(1 ≠ –/2)‡̂A]

being �(.) the usual cumulative of the normal distribution.

Problem: [LA, UA] are still random (depend on the partition
(A, M))!
In order to obtain an estimator and a confidence set which are
non-random conditional on data, we should turn to quantifying ii)
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Quantifying ii), strategy 1

How to account for the uncertainty given by the fact that di�erent
partitions give di�erent estimates?
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Quantifying ii) continue...

I The above CI are overall fine (strategy 1);
I However more precise CI can be found using p-values. This is

explained in the next slides. Let’s call it strategy 2.

The latter exercise is useful since by constructing the more precise
CI we compute also the p-value and hence can see exactly how
hypothesis testing is done!
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Quantifying ii), strategy 2

Define:

and also...
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Quantifying ii), strategy 2

In strategy 2 we still have to adjust for the fact that di�erent
partitions give di�erent estimates, i.e. we still have to define the
adjusted p-values.
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In other words, we cannot state that a would be normal test such
as pA Æ – defines a test with significance level – because pA

depends A. Thus we should somehow aggregate the di�erent
p-values pA for each choice of A to reach a unique p:
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Clarify: So if we want to make a test at significance –, we should
take as p the median of all the pA ("most frequent" pA) computed
for di�erent choices of A. Then we check for how many splits A

the pA falls below –/2. If this happens for more than 50% of the
splits, then we have a valid test.

Problem: How can we be sure that the threshold of 50% is a
good one for defining the significance level at –? we will see it in 2
ways...
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Quantifying ii), strategy 2

First:

federico nutarelli
We want that the average number of times in which U_j is lower or equal than ⍺/2 is greater than 50% so that we are sure that U_j ≦ ⍺/2 is a median of all the random variables U_j (i.e. it happens in more than 50% of the uniform random variables). In other words if  M ≦ ⍺/2 then, the majority of the U_j  is below ⍺/2.

federico nutarelli

federico nutarelli
(the p_A for us)

federico nutarelli
*

federico nutarelli
* Markov Inequality states that: P(X≧⍺)≦E[X]/⍺. In our case by 4.0, ⍺=1/2, and X =  G. So by Markov we say that P(G≧1/2)≦E[G]/(1/2)=2*E[G] ≦ 2*E[1(U_j ≦⍺/2)] ≦ 2*⍺/2 where the penultimate inequality stands because there is no more the division by J. The last is complicated. Intuitively say that E[1(U_j≦⍺/2)] is dicothomous and hence is = p_1*1+(1-p_1)*0=p_1 = P(U_j ≦⍺/2) = U_j if 0≦U_j ≦⍺/2. So ⍺/2 is a max for the latter probability, meaning that we are sure that E[1(U_j≦⍺/2)]=p_1 ≦⍺/2.

federico nutarelli
(4.0)

federico nutarelli

federico nutarelli
Call it: G
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Second which also defines the more precise CI:

federico nutarelli
Notice that this and Lemma 4.1 show that p.5 is a valid test at level ⍺ as p_A is a median lower or equal than   ⍺/2 and we showed that its probability is lower or equal than ⍺ and, thanks to th. 4.1 that it converges to ⍺.

federico nutarelli

federico nutarelli
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Application
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Disclaimer

If you are willing to apply the described methodology, I would
recommend going through Chernuzokov sorted e�ects theoretical
paper ([4]) plus to go and check out the following link:
https://cran.r-project.org/web/packages/
SortedEffects/vignettes/SortedEffects.html.

Further suggestions: if you decide to write your own code
starting from the theoretical paper, be as patient as you can and
prepare to su�er for a week...the result will amaze you anyway, see
for instance our paper (under review) here https://www.
dropbox.com/s/dvmlf564cbth3yb/Machine_Learning_Trade_
all_2020_sorted_CADiff_8_12_22_%20%281%29.pdf?dl=0.
Appendix D will delight you with the di�culties in constructing
joint p-values.

https://cran.r-project.org/web/packages/SortedEffects/vignettes/SortedEffects.html
https://cran.r-project.org/web/packages/SortedEffects/vignettes/SortedEffects.html
https://www.dropbox.com/s/dvmlf564cbth3yb/Machine_Learning_Trade_all_2020_sorted_CADiff_8_12_22_%20%281%29.pdf?dl=0
https://www.dropbox.com/s/dvmlf564cbth3yb/Machine_Learning_Trade_all_2020_sorted_CADiff_8_12_22_%20%281%29.pdf?dl=0
https://www.dropbox.com/s/dvmlf564cbth3yb/Machine_Learning_Trade_all_2020_sorted_CADiff_8_12_22_%20%281%29.pdf?dl=0
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A useful algorithm to apply generalized ML (is the one applied for
India’s immunization e�ectiveness):

Step 0 Fix number of splits R

Step 1 Compute propensity score p(Zi)
Step 2 Divide each split in half into A and M . For each split

r = 1, . . . , R:
I Learn B(.) and S(.) on A and predict them on M to obtain

predicted baseline treatment e�ect B(.) and predicted
treatment e�ect S(.)

I Estimate BLP parameters via weighted OLS in M , i.e.:

Yi = –̂ÕX1i+—̂1(Di≠p(Zi))+—̂2(Di≠p(Zi))(Si≠EN,M [Si])+Á̂i, i œ M

I Estimate GATES parameters via weighted OLS in M , i.e.:

Yi = –̂ÕX1i +
Kÿ

k=1

“̂k · (Di ≠ p(Zi)) · 1(Si œ Ik) + ‹̂i, i œ M

I Estimate CLAN parameters via weighted OLS in M , i.e.:

”̂1 = EN,M [g(Yi, Zi)|Si œ I1] and ”̂K = EN,M [g(Yi, Zi)|Si œ IK ]

federico nutarelli

federico nutarelli

federico nutarelli
How are they obtained?
(B,S) are minimizer of [Y_i-b(Z_i)-{D_i-p(Z_i)}s(Z_i)]^2

As such they can be solved using debiased-ML.
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India application (quick)

Problem: (i) Poor Indian population demand for vaccine; (ii)
dis-information lead to delays in vaccine injections in children; (iii)
parents lose steam over the course of the immunization process;
(iv) less children are vaccinated;

Proposed solution: Introduce nudges and evaluate their
e�ectiveness. Three types of nudges:
I Small incentives: phone credit upon bringing children to

vaccination;
I Information di�used through key members of the community;
I Reminders via SMS;
I Mixes of the above selected with post-LASSO (they selected

the relevant interactions among interventions).
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Set-up

I Treatment group: 25 villages where such interventions were
applied; Control group: 78 villages;

I Y : of children of 15 months or lower in a month in a village
that received the measeles shot ≠æ why? Measeles shot is
the last in the sequence and should be done at the 10th

month of living. However it is usually done with delay within
the 15th. Hence it marks people

1. who demand vaccines (because they vaccinated children until
measeles shot);

2. who lost trust in the vaccination process as they probably did
the measles (and hence all the preceding vaccines) with delay

Therefore children of 15 months or lower represent the eligible
population.

I D: treatment: 1 if the village received the treatment;
I Z: village-level characteristics.
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Results (BLP)
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Results (GATES)

Notice: GATES is done on the treatment e�ect s0(Z)!
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Results (CLAN)

Notice: while GATES is done on the e�ects, CLAN is done on covariates!
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Matrix Completion of World Trade: An Analysis of

Interpretability through Shapley Values

Gnecco G., Nutarelli F., Riccaboni M.
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Introduction

Disclaimer: this part is just to provide an application of Shapley
values discussed by Luigi. We will focus on the application
skipping the technical details of the Shapley algorithm. This is part
of a paper of mine with Massimo and Giorgio.

Idea: We have constructed a complexity index through Matrix
Completion (a ML tool) ranking countries. We would like to know
how much the information of the Relative Comparative Advantage
of each country contributed to the final value of the index. So
countries are features for us here.
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Notation (simplified)

Define RCAc,p the relative comparative advantage of a country c

for a product p (in essence the capability of a country to produce
and export a product). Typically, if RCAc,p >= 1 c has a
comparative advantage in exporting p.

Define an incidence matrix s.t.

Mc,p =
I

1, if RCAc,p Ø 1
0, otherwise

.

The proposed complexity index is based, among others, on the
degree of predictability through MC of the incidence matrix
associated with each country.
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Shapley

The Shapley value is used to measure the role of each country
(part of training and test set in MC) in predicting the elements of
Mc,p for selected countries in EU in 2018 2.

2Applications for further years in the paper.
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Shapley (reminder)

I Consider a Transferable Utility (TU) cooperative game, i.e. a
pair (N, ‹) being n = |N | the number of players (countries)
and ‹ a characteristic function (probability of correct
classification based on that subset of countries S)
associating a utility ‹(S) to each subset S of players;

I The Shapley value divides in a fair way the utility ‹(N) of the
coalition S = N among all its players. In other words, it
represents a measure of the importance of each player i œ N

for a specific TU game:

Ïi(v) =
ÿ

S™N\{i}

|S|!(n ≠ |S| ≠ 1))!
n! [v(S fi {i}) ≠ v(S)] .
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Algorithm (quick overview)

1. Generate Q
Õ country permutations as ‡

Õ
1, ‡

Õ
2, . . . , ‡

Õ
Q

2. For each permutation ‡q generate other C ≠ 1 permutations
(‡r

q) so that each country appears in first position exactly
once.

‡Õ
1 =

{c12, c14, c9, . . . , c2}

. . . ‡C≠1
1 =

{c14, c9, c11, . . . , c12}

‡1
1 =

{c2, c12, c14, . . . , c4}
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3. For each permutation ‡
r
q generate C ≠ 1 coalitions

S
1
‡r

q
, . . . , S

C≠1
‡r

q
with cardinalities

|S1
‡r

q
| = 1, . . . , |SC≠1

‡r
q

| = C ≠ 1.
4. Solve the MC optimization problem for each subset S

u
‡r

q
by

choosing a training and a test set within S
u
‡r

q

5. The resulting optimal matrix obtained with the optimal values
of regularization parameters is ZSu

‡r
q
.

6. For each ZSu
‡r

q
construct a binary classifier

7. Approximate ‹j with the accuracy of the MC classifier on the
test set

8. Shapley value is obtained by applying the formula above
(more or less)

federico nutarelli

federico nutarelli

federico nutarelli
The test set will be the last country in such a set. The training will progressively grow and will be the remaining coutries.
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Results (ranking)
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Results (map)
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Interpretation (map)

Maps are obtained averaging the Shapley values (Tab.2 above) and
another similarity index (cosine similarity).

Both Figures, therefore represent how much each country is similar
on average –according to the Shapley value (left panel) and cosine
similarity (right panel) – to the other 13 countries considered in
the analysis.

As expected, the average rankings obtained in the two cases di�er
substantially. In particular, for the dataset analyzed, it turns out
that the average ranking obtained by using approximate Shapley
values has a narrower distribution with respect to the one obtained
by using cosine similarities.
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Please find further technical details in our paper.

We did not apply SHAP but rather constructed our own algorithm
in MATLAB according to Mitchell et al. (2022).

Maybe we will check how results change if SHAP is applied
instead. Di�erence? Check Luigi’s presentation (basically in SHAP
contributions are part of a linear model).

THANK YOU FOR THE ATTENTION
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