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Abstract

Our paper presents a causal Machine Learning (ML) methodology to study the

heterogeneous effects of economy-wide shocks and applies it to the impact of the

COVID-19 crisis on exports. This method is applicable in scenarios where, due to

the pervasive nature of the shock, it is difficult to identify a control group that is

not affected by the shock and to determine ex ante differences in shock intensity

across units. In particular, our study investigates the effectiveness of different machine

learning techniques in predicting firms’ trade and, by building on recent developments

in causal ML, these predictions are used to reconstruct the counterfactual distribution

of firms’ trade under different COVID-19 scenarios and investigate the heterogeneity

of treatment effects. Specifically, we focus on the probability of Colombian firms

surviving in the export market under two different scenarios: a COVID-19 setting and

a non-COVID-19 counterfactual situation. On average, we find that the COVID-19

shock decreased a firm’s probability of surviving in the export market by about 20

percentage points in April 2020. We study the treatment effect heterogeneity by

employing a classification analysis that compares the characteristics of the firms on

the tails of the estimated distribution of the individual treatment effects.
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1 Introduction

This paper presents a methodology to study the heterogeneous effects of economy-wide

shocks, applicable in scenarios where neither a control group unaffected by the shock nor

an ex-ante definition of the intensity of the shock for each unit is possible. We apply this

methodology to the impact of the COVID-19 crisis on exports. In particular, we aim to

estimate the causal effect of COVID-19 on a firm’s probability of survival in the export

markets and to study the heterogeneity of this effect. The main hurdles for this evaluation

task are related to the pervasiveness of the COVID-19 shock. On the one hand, the fact

that all firms are eventually exposed to the effects of the COVID-19 crisis makes it hardly

possible to find a control group of firms to be used to build a counterfactual non-COVID-19

scenario. On the other hand, adopting a continuous treatment variable would imply defining

ex-ante the main patterns through which the COVID-19 shock has affected firm-level trade.

This task is highly demanding, given that the economy-wide impact of the shock is coupled

with complex interdependencies between firms and products across sectors and countries.

The paper’s main idea is to address these evaluation challenges, which are present when

studying the heterogeneous impact of economy-wide shocks, by leveraging the predictive

capabilities of Machine Learning (ML) techniques.

To face the COVID-19 crisis, governments implemented social distancing and lockdown

policies, exacerbating supply and demand shocks (World Bank, 2020). In a interconnected

world, the impact of the pandemic on international trade has gained great attention

(Felbermayr and Görg, 2020; Antràs et al., 2023; Bonadio et al., 2020; Evenett, 2020).

Global trade, which is typically more volatile than output and tends to fall sharply during a

crisis, has shown the biggest fall since the 2009 global financial crisis. From the beginning

of the COVID-19 epidemic, scholars underlined that, though its impact on international

trade could have been comparable to the Great Trade Collapse of 2008-2009, this time,

the demand-side shock is accompanied by a supply-side shock (Baldwin and Tomiura,

2020). Moreover, this supply-side effect could be reinforced by a supply-side contagion via

importing/supply chains, which have grown in relevance during the last decade (Antras and

Chor, 2022). In other words, supply disruptions in the countries providing intermediate

inputs to a given country are likely to hurt also its export performance (Halpern et al., 2015;

Navas et al., 2020).

We focus on Colombian exporters because of the vulnerability of the Colombian economy

to the COVID-19 shock and the availability of detailed customs data. As in many other

developing and industrialized countries, Colombia experienced domestic supply and demand

shocks in 2020, with factory closures, the suspension of some public services and supply

chain disruptions.

By interpreting exporters’ dynamics as a complex learning process,1 this paper’s first

1Firms have heterogeneous and incomplete information about the trade opportunities. This is true both
on the exporting and the importing side of firm activities. For example, in Albornoz et al. (2012) and Eslava
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contribution is exploring and comparing the effectiveness of different ML techniques in

predicting firms’ trade status in two different scenarios, a COVID-19 and a non-COVID-19

setting. ML techniques have been successfully applied to predict firm performances in

high-dimensional contexts (Bargagli-Stoffi et al., 2021) in which the number of potentially

relevant explanatory variables is very high. Our paper fits into a nascent literature that is

applying ML techniques to study international trade patterns (Breinlich et al., 2022) and,

up to what we know, in our study for the first time ML techniques are used to investigate

firm-level international trade performance. Estimating more accurately the likelihood of a

firm’s success in exporting could be useful to increase the effectiveness of export promotion

agencies (Van Biesebroeck et al., 2015) by helping them target their activities. However,

the effectiveness of ML in improving the prediction of a firm’s success cannot be taken for

granted, especially for developing countries, as shown by McKenzie and Sansone (2019).

This paper’s second and main contribution is to show how to use these predictions to

estimate the causal effect of the COVID-19 shock at the firm level and to study its possible

heterogeneity. We use the estimated ML model with the best performance in predicting the

2019 export status of firms exporting in 2018 to build a 2020 non-COVID-19 counterfactual

outcome for firms exporting in 2019. Then, we compare these counterfactual non-COVID-19

firm-level export probabilities with the predicted probabilities of the best-performing ML

model using the characteristics of 2019 exporters to predict their export status in 2020. The

latter estimated probabilities summarize the information on the observed COVID-19 scenario

and express it in a metric comparable with the estimated counterfactual non-COVID-19

outcomes. In the literature using ML counterfactuals when no control group is available

(Cerqua and Letta, 2020; Fabra et al., 2022), it is instead common to estimate causal effects

by comparing the counterfactual predictions with the observed outcome in case of treatment,

following the so-called “consistency assumption”: if the outcome in case of treatment

is observed then it also represents the potential outcome under treatment. We follow

Chernozhukov et al. (2023)2 by using ML techniques to reconstruct firm potential outcomes

in the case of no treatment and also to predict the outcomes in the treatment scenario. From

a methodological standpoint, our study represents the pioneering application and adaptation

of the generic machine learning tools proposed by Chernozhukov et al. (2023) in a context

where a control group is unavailable.3 Furthermore, we provide guidance on utilizing in-time

placebo tests to assess the credibility of counterfactual estimates. Additionally, we compare

the estimation results of the average treatment effect and treatment effect heterogeneity

obtained by employing the predicted outcomes in the case of treatment, as proposed by

et al. (2015) exporting firms are uncertain and learn about the appeal of their products and, more in general,
about the profitability of exporting their products on the international markets. By searching for clients
and observing their realized profitability, firms update their beliefs about their capabilities in international
markets.

2See formulas 2.6 and 2.7.
3For applications of the generic machine learning methodology in economics see Deryugina et al. (2019);

Magnan et al. (2021); Baiardi and Naghi (2024); Buhl-Wiggers et al. (2024).
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Chernozhukov et al. (2023), with those obtained using the observed outcomes of treated

units (i.e., following the Cerqua and Letta (2020) and Fabra et al. (2022) approach). Our

findings suggest that while the estimates of the average treatment effect remain robust across

methodologies, the former approach should be preferred when the objective is to identify the

observations with the highest and lowest treatment effects, and subsequently determine the

factors contributing to treatment effect heterogeneity.

Examining the heterogeneous effects of economy-wide shocks is a crucial undertaking as

it represents the foundational stage in devising policy interventions intended to mitigate their

deleterious outcomes and reactivate economic operations. However, from a methodological

point of view, investigating the treatment effect heterogeneity is not a straightforward task

when its potential determinants are many. The traditional approach splits the sample into

groups to assess the significance of the difference in the treatment effects of the groups.

Unfortunately, this approach is prone to overfitting, and finding statistically significant

differences out of all possible splits might be entirely due to random noise. Recently, new

tools based on ML have been developed to identify subgroups that are particularly responsive

to the treatment (Athey et al., 2019; Chernozhukov et al., 2023). Building on the recent

progress in causal ML application to the analysis of heterogeneous effects, in this paper we

adopt an agnostic ML model to investigate treatment effect heterogeneity. In particular, we

interpret the estimated effects stemming from our ML counterfactual empirical model by

using the Sorted Effects method (Chernozhukov et al., 2018, 2023). This method focuses on

the tails of the estimated distribution of the firm-level treatment effect to identify the units

that are most affected and those that are least affected by the treatment (whose characteristics

are compared). We provide evidence that contrasting the estimated counterfactual outcomes

with the outcomes predicted for the treatment scenario (and not directly with the observed

outcomes under treatment) is crucial to correct the estimation error arising from the imperfect

reconstruction of the unobservable counterfactual.

Our paper is connected to the literature on the heterogeneous impact of the COVID-19

shock on trade. Using firm-level monthly data on Spanish trade in goods, de Lucio et al.

(2020) find that exports decreased more in countries that introduced strict policies to contain

COVID-19 and for goods that are consumed outside the household, particularly between

March and May, showing how Spain’s export performance during the pandemic depends on

COVID-19-induced demand shocks in export markets and the characteristics of products.

Using monthly bilateral product-level trade flows that cover three-quarters of world trade,

Berthou and Stumpner (2024) also find that the impact of the COVID-19 shock on exports

was particularly strong in the spring of 2020, and that demand shocks related to COVID-19

impacted exports directly (shocks in importing countries) but also indirectly (shocks in third

countries). Using a sector-level gravity model, Espitia et al. (2021) show that, during the

COVID-19 crisis, sectors that tend to be relatively less internationally integrated suffered

less from foreign shocks but were more vulnerable to domestic shocks. Using data on Chinese
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imports at the country-product level, also Liu et al. (2021) show that the COVID-19 effects

are heterogeneous, being weaker for medical goods and stronger for durable consumption

goods. All these papers base their identification strategy of the average COVID-19 effect

on the cross-country differences in the implementation of lockdown measures over time

and study treatment effect heterogeneity by focusing on subsamples or interacting the

treatment variable with other possible determinants of heterogeneity. We share with these

studies the ambition to estimate the causal impact of COVID-19 on trade and its possible

heterogeneity. However, we use a different approach based on constructing a counterfactual

using the predictive power of ML that, as explained above, recognises that all firms are

directly or indirectly affected by this economy-wide shock and that it is very challenging

to define ex-ante a variable summarising the (differential) intensity of the shock for each

firm. Moreover, we implement the heterogeneity analysis by using a classification analysis

that safeguards against the risks of overfitting and multiple testing. Among the possible

determinants of heterogeneity, we also consider a firm’s diversification on the export and

import side. Therefore, our study is also related to the international trade literature on

the role of diversification in mediating the impact of adverse shocks (Kramarz et al., 2020;

Grossman et al., 2021; Lafrogne-Joussier et al., 2022).

Using our innovative ML approach, we find that the COVID-19 shock reduced the

probability of a Colombian firm surviving in the export market in April 2020 by around

20 percentage points. Our analysis of the estimated distribution of treatment effects shows

that there is considerable heterogeneity behind these average results. We highlight that

more affected firms tend to be small-sized and more exposed to export destinations and

import source countries that are more severely hit by the containment policies related to the

COVID-19 shock. We identify the firms most and least affected by COVID-19 and compare

their characteristics by combining the Sorted Partial Effects methodology with our causal

ML approach, which shows that integration into global value chains on the import side is

an important determinant of exporters’ resilience to the COVID-19 shock. Our findings

contribute to the development of targeted recovery policies by identifying the firms most

affected by exogenous widespread shocks.

The paper is structured as follows. Section 2 details our empirical strategy. Section 3

presents the firm-level data, variables employed in the analysis, and descriptive statistics.

Section 4 reports the estimation results, and Section 5 summarizes our findings and discusses

the relevance and limitations of our analysis.

2 Methodological framework

This section lays out our empirical approach to estimating the effect of an economy-wide

shock on firms’ survival probabilities in export markets and exploring its heterogeneity based

on firms’ observable attributes.
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2.1 Our Causal ML setup

We aim to study the (conditional) average effect of an economy wide shock (e.g., the

COVID-19 effect in our specific application) on the probability that the cohort of firms

that were exporting in a given month during the pre-shock year ts−1 (e.g., year 2019 in our

specific application) will export again during the same month of the year of the shock ts

(that is 2020 in our specific application).4 Therefore, the empirical analysis is carried out

separately for each month.5 This allows the effects of the explanatory variables (e.g., the

hypothesized determinants of firm export status) to vary throughout the year.

For economy-wide shocks such as COVID–19, there is no unambiguous definition of an

“untreated” group because, plausibly, all firms are subject to the shock. Consequently, if

we define the potential outcome for firm i at time t under treatment status D ∈ {0, 1} as

Y D
it —where D indicates the presence of the shock—the standard Conditional Independence

Assumption (CIA), Y 0
i,ts ⊥⊥ Di,ts | Xi,ts−1 , used to identify the Average Treatment Effect on

the Treated (ATT) when a contemporaneous control group is available cannot be invoked as

the assumption of common support is violated since P (Di,ts= 1 | Xi,ts−1) = 1. Indeed, in

this setting, the ATT coincides with the Average Treatment Effect (ATE) for the cohort

of COVID–19-exposed firms, ATE = E(Y 1
i,ts − Y 0

i,ts).
6 Furthermore, even an identification

strategy based on comparing individual firms subject to different treatment intensities does

not seem feasible due to the complex and ex-ante unknown paths through which firms are

potentially exposed to treatment. Though we study whether treatment effect heterogeneity

depends, inter alia, on firm-specific measures of the intensity of the COVID-19 shock,7 the

intensity of treatment effect might also depend on other firms’ characteristics, such as the

identity of suppliers and clients, the characteristics of the traded final product, among many

others, that we cannot know in advance and whose interactions are a priori unknown.

Therefore, we refer to all the observations (Yi,ts , Xi,ts−1) for the cohort of firms that

exported in ts−1 as the treated group (i.e., all observations belonging to our sample at ts).

Moreover, invoking the so-called consistency assumption, we assume that for the treated

group the observed outcome in the year of the shock Yi,ts represents the potential outcome

4Although the primary analysis focuses on the extensive margin, the proposed methodology is general
and can be readily extended to continuous outcomes, allowing an analysis of the intensive margin. Descriptive
evidence for the intensive margin is provided in the Appendix.

5In line with the literature on this topic (see, e.g., de Lucio et al., 2020; Berthou and Stumpner, 2024;
Espitia et al., 2021; Liu et al., 2021), we perform a monthly analysis as the COVID-19 shock has evolved
rapidly and unevenly over the months in 2020, as described in the Appendix A.

6While we assume ATT = ATE because we think that all firms are subject to the economy-wide
COVID-19 shock, this does not imply that all firms experience a non-zero effect. Some treated firms may
have a negligible or even positive impact from the shock. In such cases, our ATT estimate is not biased
but simply reflects treatment–effect heterogeneity. However, if some firms were in fact not subject to the
COVID-19 shock (i.e., untreated), our methodology would underestimate the ATT.

7These indexes are described in detail in section 3. They are based on firms’ past export and import
activities in different countries and on the time-varying strength of the virus and the stringency of the
policies aimed at mitigating its spread.
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in case of treatment Y 1
i,ts .

8

As is common when studying the effects of widespread shocks, we must therefore use the

information about behavior before the shock to estimate the counterfactual behavior (in the

hypothetical situation without the shock) during the actual shock. This process involves

forecasting the future conduct of entities based on their historical behavior, an application

perfectly suited to ML techniques, which are designed for such out-of-sample prediction tasks.

In line with the reasoning of Varian (2016), and drawing parallels with the applications

employed by Cerqua and Letta (2020), and Fabra et al. (2022), we harness the predictive

strength of ML techniques. This allows us to construct a hypothetical scenario for firm-level

outcomes during the shock period, using pre-shock data concerning firms’ export behaviors

and attributes. We will use information on the export status in a given month of ts−1 (that

is 2019 in our specific application) for firms that were exporting in the same month of year

ts−2 (e.g., year 2018 in our specific application) and the observed characteristics of such firms

in ts−2 to learn the counterfactual function that we apply to the treated group for estimating

Y 0
its . We refer to the observations (Yits−1 , Xits−2) for the cohort of firms that exported in ts−2

as the control group.

The main assumptions used to reconstruct the unobserved counterfactual outcome during

the year of the shock using the pre-shock observed firms’ behaviour are: (i) absence of

anticipatory effects of the shock on covariates measured at ts−1 and ts−2 and on the outcome

at ts−1, (ii) stability of the counterfactual function in time and (iii) a common support

assumption. They are explained in detail below.

(i) No anticipation effects on outcomes and covariates. Neither observed outcomes at ts−1

nor covariates at ts − 2 and ts − 1 are affected by the shock happening at ts:

Yi,ts−1 = Y 0
i,ts−1

, Xi,t = X0
i,t for t = (ts − 1, ts − 2) (1)

Notice that, since the treatment occurs at ts, for (1) to hold it is sufficient to rule out

any effect of the future shock at ts on the observed Yi,ts−1 . Moreover, (1) implies that the

CIA holds for the control group at ts−1, that is, Y
0
i,ts−1

⊥⊥ Di,ts−1 | Xi,ts−2 . Consequently,

8The consistency assumption corresponds to the first component of the Stable Unit Treatment Value
Assumption (SUTVA; Keele, 2015), which requires that there are no hidden forms of treatment. We maintain
this assumption by adopting a deliberately broad definition of treatment — being in the sample at time
ts — which, while encompassing a potentially different intensity of the shock for each unit, remains useful
for generating policy recommendations concerning the firms relatively more affected by the shock. These
recommendations are informative even if treatment-effect heterogeneity is partly confounded by heterogeneity
in the treatment itself, since firms that are more affected may be so either because their characteristics are
correlated with higher treatment intensity or because the treatment interacts with their characteristics. The
second component of SUTVA — the no-interference assumption — is not relevant in our setting because
we do not rely on a contemporaneous control group that could be indirectly affected and our focus is on
estimating the total effect of the treatment, which by construction includes both the direct effect on a
unit from the treatment it receives and any indirect effects arising from spillovers or general-equilibrium
adjustments. Disentangling between direct and indirect effects lies beyond the scope of this paper.
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at ts−1 the conditional expectation of the observed outcome coincides with that of the

potential outcome under no treatment: E[Y 0
i,ts−1

| Xi,ts−2 ] = E[Yi,ts−1 | Xi,ts−2 ].

(ii) Stability of the Counterfactual Function. This assumption is about the stability of the

function that expresses the expected value of the conditional potential outcome in time.

Define Y 0
i,t = f 0

t (X
0
i,t−1) + u0

i,t, where f 0
t (·) is a generic model or function representing

the relationship between explanatory variables and the outcome in the absence of the

shock such that E[Y 0
i,t|X0

i,t−1] = f 0
t (X

0
i,t−1). Under (i), for t = ts − 1 we have that

Yi,ts−1 = f 0
ts−1(Xi,ts−2)+u0

i,ts−1 such that E[Yi,ts−1|Xi,ts−2] = f 0
ts−1(Xi,ts−2). The second

assumption states that the function f 0
t does not depend on t, i.e., it is stable over the

two considered years:

f 0
ts−1 = f 0

ts = f 0. (2)

Under assumptions (i) and (ii), if Xi,ts−1 = Xi,ts−2 then E[Y 0
i,ts | Xti,s−1

] = E[Y 0
i,ts−1

|
Xi,ts−2 ]. In other words, the conditional expectation of the potential outcome under no

treatment at ts coincides with that at ts−1.

(iii) Common support. The support of the distribution of the explanatory variables of the

firms belonging to the treated group is included in the support of the distribution of

the explanatory variables of the firms belonging to the control group:

P (Di,{ts,ts−1} = 1|Xi,{ts−1,ts−2}) = e(Xi,{ts−1,ts−2}) < 1 (3)

where Di,{ts−1,ts} is a dummy variable indicating whether an observation belongs to

the treated group or to the control group, and Xi,{ts−1,ts−2} are the corresponding

explanatory variables. Therefore, this expression defines a condition on the values

of the propensity score, which we denote as e(Xi,{ts−1,ts−2}). This assumption allows

nonparametric identification of the (conditional) average effects.

Thanks to these assumptions, when Xi,ts−1 = Xi,ts−2 , we have that E[Y 0
i,ts | Xi,ts−1 ] =

E[Y 0
i,ts−1

| Xi,ts−2 ] = E[Yi,ts−1 | Xi,ts−2 ]: the conditional expectation function of the potential

outcome in case of no treatment at ts−1 can be identified by computing the conditional

expectation function of the observed outcome at ts−1 and it coincides with the conditional

expectation function of the potential outcome in case of no treatment at ts.

Since f 0 is in practice unknown, we must estimate it. Under the above assumptions,

we can write Y 0
i,ts = f 0(Xi,ts−1) + u0

i,ts , such that E[Y 0
i,ts|Xi,ts−1] = f 0(Xi,ts−1), and we can

use data on ts − 2 and ts − 1 to estimate Y 0
i,ts−1 = f 0(Xi,ts−2) + u0

ts−1 and retrieve f̂ 0. By

applying this invariant estimated function to the covariates of ts − 1, we can obtain the

predictions for the counterfactual (without the shock) outcome in ts:

Ŷ 0
i,ts = f̂ 0(Xi,ts−1) = Y 0

i,ts −
Prediction error︷︸︸︷

E0
i,ts −

Orthogonal error︷︸︸︷
u0
i,ts . (4)
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The model we utilize to derive this counterfactual (and the counterfactual itself) is

referred to as the “Shock Unaware Machine” (SUM), a term acknowledging the ML techniques

employed in constructing the counterfactual and the fact that no information about the

shock is used in the analyses. In the application we present in this paper, we rely on the

“K-fold” cross-validation method (with K = 5) to discriminate between the considered ML

techniques. We randomly divide the set of exporters observed in ts − 2 = 2018 (considering

the exporting success during the same month in ts − 1 = 2019 as the outcome) into 5 equally

sized groups and obtain the predictions for the firms belonging to a group by estimating

Yi,2019 = f 0(Xi,2018) + u0
i,2019 with different ML models on the firms belonging to the other

groups. Then we compute the accuracy of the different models for each month and choose

the model with the best average performance across months. Notice that this comparison is

entirely based on the pre-pandemic accuracy of the ML models by comparing the predictions

Ŷi,2019 with the observed Yi,2019, not on its merits in predicting the firms’ outcomes in 2020.

Finally, we obtain the Ŷ 0
i,2020 by estimating Yi,2019 = f 0(Xi,2018) + u0

i,2019 on the entire set of

2018 units (also in this case month by month) and, as shown in (4), applying the estimated

function f̂ 0 to the set of 2019 units. Given that during the first three months of 2020

Colombia was in practice not exposed to COVID-19 (and therefore Yi,2020 = Y 0
i,2020), if

assumption (2) holds, we expect that in those months the accuracy of the predictions Ŷi,2019

obtained in the cross-validation step for 2019 will be very similar to the accuracy of Ŷ 0
i,2020

for 2020.

Following Cerqua and Letta (2020) and Fabra et al. (2022), we define the simple

comparison of the observed outcome under the shock in ts with the estimated counterfactual

outcome as an estimator of the individual-specific shock effect αi. This comparison is

represented as:
ˆ̂αi = Yi,ts − Ŷ 0

i,ts . (5)

This provides the full distribution of estimated individual treatment effects, that is, each

unit’s Conditional Average Treatment Estimate (CATE) estimate (Salditt et al., 2024).

The ATE and the CATEz, that is the Conditional Average Treatment Effect for those

units with Zi,ts−1 = zi,ts−1 where Z is a subset of the variables X (Z ⊂ X),9 are estimated

by averaging these estimated individual treatment effects. Therefore, the estimators of ATE

and CATEz based on ˆ̂αi can be defined as:

¯̂
α̂ =

1

N

N∑
i=1

ˆ̂αi,
¯̂
α̂Z =

1

Nz

∑
i∈Cz

ˆ̂αi, (6)

where N is the number of observations, Cz = {i : Zi,ts−1 = zi,ts−1} and Nz = |Cz|.
As it is shown below,

¯̂
α̂z is an unbiased estimator of CATEz if in the relevant subsample

the mean of the expected prediction error, (1/Nz)
∑

i∈Cz
E[E0

i,ts ], is zero.

9For example, CATEtextile is the average treatment effect for firms belonging to the textile industry.
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E
[
¯̂
α̂z

]
= E

[
1

Nz

∑
i∈Cz

ˆ̂αi

]
=

1

Nz

∑
i∈Cz

E[ ˆ̂αi]

=
1

Nz

∑
i∈Cz

E
[
Yi,ts − Y 0

i,ts − E0
i,ts − u0

i,ts

]
=

1

Nz

∑
i∈Cz

αi︸ ︷︷ ︸
CATEz

− 1

Nz

∑
i∈Cz

E[E0
i,ts ]−

1

Nz

∑
i∈Cz

E[u0
i,ts ]︸ ︷︷ ︸

= 0 by (i) and (ii)

(7)

Notice that in the second row, we substitute Eq. (4) plugged in Eq. (5). Similarly,
¯̂
α̂ is an

unbiased estimator of ATE if the mean of the expected prediction error, (1/N)
∑N

i=1E[E0
i,ts ],

is zero, and
¯̂
α̂i is an unbiased estimator of the unit i’s CATE if E[E0

i,ts ] = 0.

In what follows, we introduce alternative estimators that compare the predicted counterfactual

outcomes with predicted outcomes under the treatment scenario, rather than directly with

the observed treatment outcomes. The first step is to decompose the observed outcome

in ts under the shock, Y 1
i,ts , into a generic model or function f 1(X1

i,ts−1), capturing the

relationship between covariates and the outcome during the shock, and a residual component

u1
i,ts orthogonal to the covariates:

Y 1
i,ts = f 1(X1

i,ts−1) + u1
i,ts , s.t. E[Y 1

i,ts | X
1
i,ts−1] = f 1(X1

i,ts−1). (8)

Given that Y 1
i,ts = Yi,ts and X1

i,ts−1 = Xi,ts−1, we can write:

Yi,ts = f 1(Xi,ts−1) + u1
i,ts , s.t. E[Yi,ts | Xts−1] = f 1(Xi,ts−1). (9)

We then define an alternative estimator of the individual-specific shock effect αi, that is,

each unit’s Conditional Average Treatment Estimate (CATE) estimate (Salditt et al., 2024),

as the difference between the predicted outcome under the shock in ts and the predicted

counterfactual outcome in the absence of the shock for the same firm:

α̂i = Ŷ 1
i,ts − Ŷ 0

i,ts , (10)

where Ŷ 1
i,ts = f̂ 1(Xi,ts−1) = Yi,ts − E1

i,ts − u1
i,ts .

We refer to the model used to predict Yi,ts (and the predictions Ŷi,ts themselves) as the

Shock Aware Machine (SAM). The term “Shock Aware” emphasizes that this model exploits

information from the observed shock scenario. Importantly, SAM predictions are expressed in

the same metric as the counterfactual predictions, which are produced by the SUM, allowing

them to be directly comparable.10 In our application, the SAM expresses the outcome in

2020 of exporters operating the foreign market in 2019 as a function of their characteristics

10Notice that with ˆ̂αi, we are comparing a probability (counterfactual) with a binary value (observed
outcome), while with α̂i, we are comparing two estimated probabilities.
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in 2019 and the information about governments’ shock-related stringency measures all over

the world coming from Hale et al. (2020).11 Similarly to the procedure followed to select

the best-performing SUM, we rely on a 5-fold cross-validation strategy to obtain a 2020

prediction for each firm that exported in 2019. We randomly group the 2019 exporters into

five equally sized subsets and we predict the 2020 outcomes of the firms contained in one

subset by using the information of firms contained in the remaining four subsets. In other

words, we train the models on a random 80% of the data and test them on the remaining

20% and we repeat the process five times for each different 20% subset, thus obtaining a

2020 prediction for each 2019 exporter.

The ATE estimator and CATEz estimator based on α̂i are:

¯̂α =
1

N

N∑
i=1

α̂i, ¯̂αz =
1

Nz

∑
i∈Cz

α̂i, (11)

As shown below, ¯̂αz is an unbiased estimator of the CATEz if, in the relevant subsample,

the mean of the expected prediction-error difference between SAM and SUM, 1
Nz

∑
i∈Cz

E[E1
i,ts−

E0
i,ts ], is zero:

E
[
¯̂αz

]
=

1

Nz

∑
i∈Cz

E[α̂i]

=
1

Nz

∑
i∈Cz

E
[
Yi,ts − Y 0

i,ts −
(
E1
i,ts − E0

i,ts

)
− (u1

i,ts + u0
i,ts)

]
=

1

Nz

∑
i∈Cz

αi︸ ︷︷ ︸
CATEz

− 1

Nz

∑
i∈Cz

E[E1
i,ts − E0

i,ts ]−
1

Nz

∑
i∈Cz

E[u1
i,ts − u0

i,ts ]︸ ︷︷ ︸
= 0 by (i), (ii) and (8)

.

(12)

Similarly, ¯̂α is an unbiased estimator of the ATE if 1
N

∑N
i=1E[E1

i,ts − E0
i,ts ] = 0, and ¯̂αi is

an unbiased estimator of the unit i’s CATE if E[E1
i,ts − E0

i,ts ] = 0.

Given the definitions of SAM and SUM, to simplify the reasoning in the following, we

refer to Eqs. (5) and (10), respectively as

ˆ̂αi =Y − ŶSUM = Y − SUM. (13)

α̂i =ŶSAM − ŶSUM = SAM − SUM. (14)

The conditions behind these identification results are not directly testable as they are

expressed in terms of the expected values of the prediction error E0
i,ts that is a function of the

unobservable counterfactual Y 0
i,ts . Table 1 distinguishes the five different scenarios concerning

the expected values of E0
i,ts and E1

i,ts that are relevant in determining whether applying the

statistic T to Y − SUM and SAM − SUM is able to recover the corresponding treatment

11See subsection 3.1. We do not introduce these variables explicitly as an argument of f1() to simplify
notation.
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effect estimand (e.g., whether averaging the estimated individual treatment effects would

recover the average treatment effect).

Table 1: Identification of generic functions of the individual treatment effects, T, according to the
corresponding value taken by the prediction errors

T(SAM − SUM) T(Y − SUM)

T[E[E1
i,ts ]] ̸= 0 and T[E[E0

i,ts ]] = 0 × ✓

T[E[E1
i,ts ]] = T[E[E0

i,ts ]] = 0 ✓ ✓

T[E[E1
i,ts ]] = 0 and T[E[E0

i,ts ]] ̸= 0 × ×
T[E[E1

i,ts ]] = T[E[E0
i,ts ]] ̸= 0 ✓ ×

T[E[E1
i,ts ]] ̸= T[E[E0

i,ts ]] ̸= 0 × ×

The estimators based on Y -SUM identify the population parameters when T[E[E0
i,2020]] =

0. The estimators based on SAM -SUM are unbiased whenever T[E[E1
i,2020]] = T[E[E0

i,2020]].

Under the assumption that the strength of the COVID-19 effect on export propensity was at

most very limited during the first quarter of 2020, we will use the out-of-sample prediction

errors for the first quarter of 2020 as a proxy for the unobservable behavior of E0
i,2020 in the

following months. Moreover, as explained in detail in section 4.2, the distribution of the

estimated treatment effects during the first quarter will be used to check the credibility of the

above assumptions for the set of all 2019 exporters and for different subsets of 2019 exporters

defined according to their characteristics Xi,2019 or to their position in the distribution of

such effects.

The inference is performed using bootstrap. Specifically, bootstrap samples are drawn by

resampling the training and testing datasets with replacement, preserving their original

sizes and proportions, and repeating this process 100 times per month. For each bootstrap

iteration, out-of-sample predictions are generated using each ML model trained on the

resampled datasets, with hyperparameters fixed at the values previously optimized via

cross-validation. Once the predictions are made, the SUM and SAM are calculated as

described above for each bootstrap sample within each month. To construct confidence

intervals, the predictions across all bootstrap replicates are aggregated, and the empirical

distribution of the resulting estimates is used to calculate the percentile-based bounds for

the 95% confidence interval, thus capturing the uncertainty in the predicted effects due to

sampling variability. However, as a note of caution, we remark that the literature on causal

ML has shown that estimators based on ML estimation of the conditional expectation function

of potential outcomes, such as
¯̂
α̂ and ¯̂α, inherit the slow convergence rates of the ML method

on which they are based and are not asymptotically normal, making inference problematic.

The problem with these estimators is that the moment conditions on which they are based

are not Neyman-orthogonal. To do a robustness check for the average treatment effects,

12



we use the AIPW-Double ML estimator (with 5-fold cross-fitting and nuisance parameters

estimated with Generalized Random Forest) that is consistent and asymptotically normal for

ATT = ATE = E(Y 1
ts−Y 0

ts) and ATE{ts,ts−1} = E(Y 1
{ts,ts−1}−Y 0

{ts−1,ts}) (Chernozhukov et al.,

2018), in which the average potential outcomes are expressed with a moment condition which

is Neyman Orthogonal. ATT = ATE = E(Y 1
ts − Y 0

ts) is the parameter we aim to estimate

with
¯̂
α̂ and ¯̂α. ATE{ts,ts−1} = E(Y 1

{ts,ts−1}−Y 0
{ts,ts−1}) is the average treatment effect obtained

considering the cohorts of treated and control firms together as a unique sample. To identify

ATE{ts,ts−1}, we have to make the following additional assumptions: Y 1
ts ⊥⊥ Dts | Xts−1 ;

E[Y 1
ts | Xts−1 ] = E[Y 1

ts−1
| Xts−2 ]; Yts = Y 1

ts ;P (D{ts,ts−1,} = 1|X{ts−1,ts−2}) = e(X{ts−1,ts−2}) >

0. Indeed, these assumptions are needed to identify the Average Treatment Effect on the

Untreated (ATU), which is defined as ATU = ATEts−1 = E(Y 1
ts−1

− Y 0
ts−1

), because the

ATE{ts−1,ts} = ATU ∗ (1−σ(·))+ATT ∗ (σ(·)) where σ(·) represents the share of the treated
population. Let’s define the following pseudo-outcome12

ATE
{ts,ts−1} = Ŷ 1

{ts,ts−1} − Ŷ 0
{ts,ts−1}︸ ︷︷ ︸

outcome predictions

+
D{ts,ts−1}(Y{ts,ts−1} − Ŷ 1

{ts,ts−1})

ê(X{ts−1,ts−2})
−

(1−D{ts,ts−1})(Y{ts,ts−1} − Ŷ 0
{ts,ts−1})

1− ê(X{ts−1,ts−2})︸ ︷︷ ︸
weighted residuals

(15)

The AIPW-Double ML estimator (where Ŷ 1, Ŷ 0 and ê are estimates of the nuisance

parameters obtained with ML by cross-fitting) is the average of these pseudo-outcomes and

identifies the ATE{ts,ts−1}.
13

Finally, following the nomenclature introduced by Künzel et al. (2019), we note that our

estimator ¯̂αi is referred to in the literature as the T-learner. In particular, we are applying a

T-Learner to the group of treated units. Although the T-learner is a consistent estimator

for CATE, it may have shortcomings in finite samples due to a phenomenon known as

regularization bias. This issue arises because the outcome models for treated and control

units, denoted f̂1(x) and f̂0(x), are estimated separately and may be subject to different

degrees of regularization. Such discrepancies are particularly pronounced when the sample

sizes for the two groups differ substantially, and the machine learning methods used employ

regularization schemes that are sensitive to sample size. In this case, the model trained on

the smaller group may be oversmoothed, potentially introducing artificial variation into the

estimated treatment effect.

A second concern relates to regularization-induced confounding, which may occur when

the covariate distributions of treated and control units are not well aligned. Under such

circumstances, the models f̂ 1(x) and f̂ 0(x) may be effectively trained on disjoint regions of

the covariate space. Consequently, their difference could reflect underlying distributional

12For notational convenience, the subscript “i” is omitted in the following expression.
13The procedure consists of the following steps: (a) randomly partition the data into K equally sized

folds; (b) for each fold k, leave it out and use the remaining K − 1 folds to estimate the nuisance functions
µ(d, x) = E[Yi | Di = d,Xi = x] and ed(x); (c) predict the nuisance parameters on the left-out fold k using
the estimated models, yielding cross-fitted values µ̂−k(d, x) and ê−k

d (x); and (d) repeat steps (a)-(c) so
that each fold serves once as the validation set (Knaus, 2022). This cross-fitting approach ensures that no
observation is used to predict its own nuisance parameters, thereby reducing overfitting and guaranteeing the
validity of inference. These cross-fitted estimates are subsequently used to compute the pseudo-outcomes.
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shifts rather than true treatment effect heterogeneity. This issue is often associated with

settings where the estimated outcome models correspond to regions with substantially

different values of the propensity score—for example, where f̂1(x) is learned predominantly

in areas with high propensity scores and f̂0(x) in areas with low propensity scores. Since

the T-learner does not explicitly adjust for the propensity score or reweight observations

to balance treatment groups, it may be more susceptible to this type of bias compared to

alternative estimators considering also the distribution of the propensity score, such as the

DR-learner introduced in Kennedy et al. (2020) (that approximate the E[Ỹ ATE
{ts−1,ts}|X] as a

generic ML problem; the reader is referred to the Appendix for further details).

However, in our application, these concerns are likely to be minimal. First, we leverage

a large sample size, which mitigates the risk of over-regularization. Moreover, we employ

a range of ML methods with varying levels of regularization intensity and obtain highly

consistent results across estimators. Second, the distribution of covariates is balanced

between treated and control units as shown by the estimated propensity score which is nearly

identical across groups (see Figure Appx.13). This implies that both f̂1(x) and f̂0(x) are

estimated over comparable regions of the covariate space, thereby limiting the potential for

regularization-induced confounding. Third, in practice (see Table 6, Table 7, Table 8 and

the monthly comparison of the distribution of estimated CATE in the Online Appendix),

the CATE results obtained for the T-Learner are very similar to those obtained with the

other meta-learners using the propensity score and with Generalized Random Forest.

2.2 Treatment effect heterogeneity analysis

As a further step, we perform the heterogeneity analysis by adapting the Sorted Partial

Effect (SPE) method introduced in Chernozhukov et al. (2018). Formally, the SPEs are

defined as percentiles of the αi, the individual Treatment Effects (TE), and can supply a

more detailed summary of the distribution of TE than the Average Treatment Effects (ATE),

commonly employed in econometric analysis. The SPEs are defined as

α∗(u) = uth − percentile of αi. (16)

In our setting, α∗(u) is a function of Xts−1 defined over its distribution in the population of

ts − 1 exporters.

The SPEs are used to do a classification analysis (CA) that allocates the ts − 1 exporters

into two groups, the most and the least affected by the shock, according to whether their α

are lower than α∗(25) or greater than α∗(75), respectively. Notice that, since the shock effect

is negative, we have defined as the most (negative) affected units those whose α lie in the

left tail of the sorted distribution of treatment effects. Finally, to study the determinants of

treatment effect heterogeneity, we focus on the difference in means (CADiff) of the Xts−1

across the most and least affected groups. In the estimation, we use sample analogues of
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α∗(u) and CADiff . We calculate standard errors of α∗(u) and CADiff by bootstrapping

the entire estimation process, starting from the initial αi estimation step.

Starting from B bootstrap replications of all the estimation steps (including the prediction

stage), we calculate the CADiff B times. To determine the significance of the CADiff we

perform a two-tailed test. The p-values are constructed as follows:

2 ·min{Pr(S ≥ t|H0), P r(S ≤ t|H0)}

being t the observed t test statistic, t =
˜CADifforiginal

σ̃
, drawn from the unknown distribution

S. σ̃ represents the standard deviation of the bootstrapped CADiff . To adjust the p-values

and obtain the joint p-values taking into account that we are testing hypotheses jointly on

many covariates, we reproduce the “single-step” method employed by Chernozhukov et al.

(2018) to control for the family-wise error rate.14

The application of the SPE technique presents several advantages in our setting. First,

the estimated α∗(u)s provide a summary of the distribution of the estimated treatment effects

and, therefore, of treatment effect heterogeneity. Second, the CA identifies the subgroup

of the population that is more affected by the treatment and the CADiff studies how the

heterogeneity of the treatment effect depends on observables without imposing (additional)

functional form assumptions. Third, the CADiff step provides p-value adjustments to

account for the joint testing of all the covariates that are considered to detect if observables

are associated with treatment effect heterogeneity. In other words, the main idea is to

test the null hypothesis that there is no difference between the value of the covariates in

the most and least affected group, also taking into account that we perform simultaneous

inference on several variables. Simultaneous inference on multiple covariates in the CA

and CADiff naturally raises the problem of multiple testing. To address this, we employ

14In the following is described the single-step algorithm. We will indicate the bootstrap version of a
variable, v, as ṽ and its estimated version (on the original data) as v̂. Moreover, Λ(x)−u will denote the first
moment for the feature x of interest in the least affected group including the observational units i such that
αi < α∗(u). Similarly, Λ(x)+u defines the first moment for the variable x of interest in the most affected
group including the observational units i such that αi > α∗(1 − u). Since we do not observe α directly,
the mentioned quantities are estimated. According to the above convention, the estimated value of Λ(x)−u

(Λ(x)+u) will be Λ̂(x)−u (Λ̂(x)+u) indicating the first moment for the variable x of interest for firms i such
that α̂i > α̂∗(u) (α̂i < α̂∗(1− u)). In the present paper u = 25, however, we will maintain the more general
u notation for the sake of consistency with Section 4.
The single-step algorithm proceeds as follows: 1) for each variable x ∈ Xt, compute Λ̃(x)+u and Λ̃(x)−u,
bootstrap draws of Λ̂(x)+u and Λ̂(x)−u respectively. We want to test the null hypothesis, H0, that Λ

u(x) = 0,
for Λu(x) = [Λ(x)−u,Λ(x)+u]. 2) Construct a bootstrap draw of the distribution of (Λ̂+u(x) − Λ̂−u(x)),
Zu
∞(x). The latter is obtained by exploiting the bootstrap version of Λ+u(x) and Λ−u(x), namely: Z̃∞(x) =√
n(Λ̃u(x)− Λ̂u(x)) where Λ̃u(x) = [Λ̃(x)−u, Λ̃(x)+u] (similarly, Λ̂u(x) = [Λ̂(x)−u, Λ̂(x)+u]). 3) Repeat steps

1) and 2) B times; 4) compute a bootstrap estimator of the variance of Z∞ as Σ̂u(x) =
qu0.75(x)−qu0.25(x)

z0.75−z0.25
being

qup (x) the pth sample quantile of Z̃∞(x) and zp the pth quantile of a standard normal distribution. 5) Use

the latter to construct the test statistic τ̃(Xt) = supx∈Xt
|Z̃∞(x)| · |Σ̂u(x)|−1/2. A p-value for the null H0

that Λu(x) = 0 for all x ∈ Xt of the realization of the estimated statistic, supx∈Xt |Λ̂u(x)| · |Σ̂(x)|−1/2 = s, is

given by the average number of times that τ̃(Xt) is greater than s, where s =
˜βm
1,f

Σ̂u(x)
. The .̃ indicates simply

that the βm
1,f has been projected to the bootstrap dimension.
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the single-step joint inference procedure developed by Chernozhukov et al. (2018), which

controls the family-wise error rate (FWER) via bootstrap-based p-values. This procedure

ensures that the joint probability of incorrectly rejecting any true null hypothesis across

all covariates remains bounded, thereby maintaining the overall validity of inference across

the full set of comparisons. Technically, the validity of the single-step correction relies

on the fact that the sorted effects and their induced classification structure are smooth

functionals of the data-generating process. In particular, Chernozhukov et al. (2018) show

that the sorting and classification operators are Hadamard differentiable, which allows the

use of the functional delta method to derive the large-sample distribution of the estimated

effects and their differences. This property justifies the application of bootstrap methods for

obtaining joint confidence sets and p-values, even in the presence of nonlinear models and

complex sorting rules. In our context, this implies that differences between covariates across

classification groups are not tested in isolation, but rather as a joint hypothesis — thereby

appropriately correcting for the multiplicity of comparisons and preserving valid inference.

Our inference procedure, in particular, is based on bootstrap resampling combined with

Sorted Effects and CA, as developed by Chernozhukov et al. (2018) and adapted to settings

without a contemporaneous control group. Specifically, we implement a nonparametric

empirical bootstrap in which each sample is drawn with replacement from the original data

using multinomial weights ω1, . . . , ωn with equal probability 1/n15, allows us to capture

the sampling variability of the sorted effects and their induced classification structure.

We employ B = 100 bootstrap replications, selected to balance computational feasibility

with sufficient precision, especially given that bootstrapping is nested within a multi-stage

machine learning framework involving model fitting and effect estimation across multiple

folds and time splits. As anticipated, the procedure serves two core inferential objectives:

constructing confidence intervals for CA and CADiff estimates and computing joint p-values

to assess the statistical significance of heterogeneous effects across multiple covariates. In

our setting, where the counterfactuals are generated from predictive models rather than

observed untreated outcomes, a further layer of uncertainty is introduced. To accommodate

this, the bootstrap replicates the entire estimation pipeline –model selection, prediction,

and classification –treating the Partial Effects (PE) as the true reference under the null

hypothesis. All classification and treatment effect heterogeneity measures are re-estimated

in each bootstrap sample. Finally, the entire inference pipeline is integrated with k-fold

cross-validation, preserving stability and validity in the estimation of sorted effects.

2.3 Comparison with Generic ML

Our approach in estimating the individual treatment effect and in performing the heterogeneity

analysis is similar to the generic ML technique presented in Chernozhukov et al. (2023),

15The reader is referred to Algorithm 2.2 in our supplemental material available upon request.
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which is adapted to a situation in which there is no available (contemporaneous) control

group (i.e., it is difficult to identify ex-ante firms that are not affected by the shock).

We show that our empirical strategy is built on the same pillars as Chernozhukov et al.

(2023), but applies them to a different setting. To simplify the exposition, we refer to Table

2 which provides a simplified representation of our empirical setting.

Chernozhukov et al. (2023) deal with an experimental empirical setting in which one can

easily separate a treated group from a control group. In order to study the heterogeneity of

the average treatment effect, the first step of Chernozhukov et al. (2023) is to split randomly

the sample under analysis in an auxiliary (A) and a main sample (M) of approximately

the same size. Then, they employ ML techniques to learn in A the function approximating

the potential outcomes in the treatment and non-treatment scenarios, while M is used to

make inferences on the key features of treatment effect heterogeneity. In other words, they

estimate the function describing the outcome in case of treatment (no treatment) on the

subset of treated (non-treated) firms contained in A. These two estimated functions are

used to impute the two potential outcomes for each firm contained in the M sample (the

difference represents the estimated individual treatment effects) and study the treatment

effect heterogeneity estimated for these firms by using, inter alia, the Sorted Effects method

(Chernozhukov et al., 2018). This procedure is designed in this way to avoid overfitting

(i.e., doing learning and prediction using the same sample), and, starting from the random

splitting, it is repeated many times in order to obtain many distributions of estimated

treatment effects to which the Sorted Effects method is applied.
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Our Setting
Chernozhukov

(2020) Setting

SUM SAM A−M splitting

(X2018, Y2019)1 (X2019, Y2020)11 (X2019, Y2020)11 (X2019, Y2020)11

(X2018, Y2019)2 (X2019, Y2020)12 (X2019, Y2020)12 (X2019, Y2020)12

(X2018, Y2019)3 (X2019, Y2020)13 (X2019, Y2020)13 (X2019, Y2020)13

(X2018, Y2019)4 (X2019, Y2020)14 (X2019, Y2020)14 (X2019, Y2020)14

(X2018, Y2019)5 (X2019, Y2020)15 (X2019, Y2020)15 (X2019, Y2020)15

(X2018, Y2019)6 (X2019, Y2020)16 (X2019, Y2020)16 (X2019, Y2020)16

(X2018, Y2019)7 (X2019, Y2020)17 (X2019, Y2020)17 (X2019, Y2020)17

(X2018, Y2019)8 (X2019, Y2020)18 (X2019, Y2020)18 (X2019, Y2020)18

(X2018, Y2019)9 (X2019, Y2020)19 (X2019, Y2020)19 (X2019, Y2020)19

(X2018, Y2019)10 (X2019, Y2020)20 (X2019, Y2020)20 (X2019, Y2020)20

Table 2: A simplified representation of our empirical setting in which we compare the methods
used in the present paper to those described in Chernozhukov et al. (2023).

A

M

As an example, in Table 2, we represent 20 exporting firms observed in 2018 or in 2019.

In the context of our setting, the strategy of Chernozhukov et al. (2018) would imply that

the 2019 sample, for which we are interested in estimating the average treatment effect,

should be divided in two, as shown in the last column of Table 2. However, in the COVID-19

scenario, one cannot easily separate treated and control units because COVID-19 imposes

a (at least indirect) treatment over all units, hence preventing the possibility of discerning

between treated and controls.16 Moreover, with respect to Chernozhukov et al. (2023), in

our empirical setting, we do not have the necessity to predict the outcome of controls in the

case of “no treatment” because we are not interested in estimating the COVID-19 effect

on 2018 exporters. Therefore, we do not have to split the controls observed in 2018 in two

halves to avoid overfitting and this enables us to reconstruct a counterfactual outcome of no

treatment for each 2019 exporter without incurring in overfitting problems. Therefore, in

this paper for the SUM we use as an auxiliary sample all the Colombian exporters observed

in 2018 (A) and as the main sample (M) all the Colombian exporters observed in 2019. For

the SAM, we perform instead a K-Fold splitting in which, iteratively we select 80% of the

firms in 2019-2020 as being part of A and the remaining 20% as being part of M . This is

shown in the column “Our Setting (SAM)” of Table 2, where different A (and, accordingly

16Furthermore, even if we assume that during the first three months of the year there was no COVID-19
effect going on, and therefore we categorize as non-treated (treated) firms operating in those months (in the
other remaining months), and we use the non treated firms in the auxiliary sample to learn, it would be
problematic to use the learning outcome in case of no treatment during the first three months to predict the
outcome in case of no treatment for the treated firms that are those in the last 8 months because of the strong
seasonality effects we have. So the outcome during the first three months in case of no treatment would be
very different from the outcome of the last months in case of no treatment just because of seasonality effects.
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different M) groups are selected according to the different colors of the dashed circles. In

this way we avoid overfitting problems and, at the same time, we exploit all the available

data by being able to compare the predicted probabilities to export in the COVID-19 with

those in the non-COVID-19 scenario for all the observed 2019 exporters.

Lemma D.1 of Chernozhukov et al. (2023) provides a theoretical foundation for conducting

valid inference on key features of CATE. This lemma relies on several underlying assumptions.

Most notably, Chernozhukov et al. (2023) assume a randomized controlled trial (RCT)

setting. In our case, this assumption is not overly restrictive, as the estimated distribution

of the propensity score in our sample lies within a narrow range of 0.498 to 0.511, closely

approximating random assignment according to the distribution of observables (see Figure

Appx.13 in Appendix H). Another possible limitation of our setting is the overlap of firms

between t−1 and t, given by the panel nature of the dataset, which could introduce overfitting

problems in our strategy. The original sample splitting procedure of Chernozhukov et al.

(2023) instead is not affected by this problem, using different sets of firms in the A and M

samples.

The SPE (Chernozhukov et al., 2018) offers formal inference guarantees. In particular,

the bootstrap-based confidence bands are valid under mild regularity conditions. We verify

these conditions in our setting following the guidance in Chernozhukov et al. (2018), which

centers on the smoothness and non-degeneracy of the estimated treatment effects function, as

shown in the Online Appendix. However, the SPE is a method originally designed for doing

inference on CATEs obtained with parametric and semiparametric estimators, and not for

machine learners. In Chernozhukov et al. (2023), Group Average Treatment Effects (GATES),

which have been designed for studying CATE estimates obtained with ML methods, have the

same role as SPE, as detailed in section 4.5. The main difference between SPE and GATES

is that the former summarises the distribution of CATEs by estimating its percentiles, while

the latter divides the support of estimated CATEs in bins by typically using quartiles or

quintiles and estimates averages of the CATEs within these bins. Finally, the classification

analysis (CA) employed in Chernozhukov et al. (2018) and in this paper is the same as the

Classification Analysis (CLAN) presented in Chernozhukov et al. (2023).

Therefore, as a robustness check, in section 4.5 we will follow the procedure outlined

by Chernozhukov et al. (2024) to apply the Chernozhukov et al. (2023)’s methodology to a

research design characterized by the Conditional Independence Assumption and we compare

the results obtained with those conveyed by SPE.

3 Data and Dependent Variable

This study focuses on the social and economic disruption caused by the COVID-19 pandemic

and its effect on Colombian exporters. This global health crisis triggered by the COVID-19

pandemic served as a notable example of a large-scale economic shock that profoundly
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impacted global trade, with the dynamics of exporters in Colombia being significantly

affected. Applying our ML strategy to data collected from Colombian exporting companies

during this period can provide key insights into how companies adapt and survive in the face

of such widespread disruption. This provides an understanding of market resilience and firm

survival dynamics in the context of global trade shocks. Therefore, our dependent variable

Yi,t is a dummy variable that takes the value 1 if a firm i is an exporter at time t –given

that it was an exporter in t − 1– and the value 0 if the firm is not exporting at time t.17

By grounding our research on a specific case study, we maintain its relevance to the specific

scenario while preserving its potential for broader applications.

We use monthly export transaction data reported at the Colombian Customs Office

(Dirección de Impuestos y Aduanas Nacionales, DIAN) for 2018, 2019, and 2020. For

each transaction, we consider the exporter ID as the firm identifier; the date; a 10-digit

Harmonized System code (HS) characterizing the product; the product origin within Colombia

(department level); the means of transportation of the shipment; the country of destination;

and, the free on board value of the export transaction in US dollars. This data set also

contains information about the value and origin country from which a given exporter imports.

We remove all transactions related to re-exports of products elaborated in other countries.

As a result, we ended up with 386,132 customs reports in 2018 (7 741 firms), 402,140 in 2019

(7 831 firms), and 365,626 in 2020 (7 518 firms).

3.1 Control Variables

The selection of control variables is based on the determinants of firm entry and exit in

foreign trade (see, e.g., Albornoz et al., 2012; Arkolakis et al., 2021). We classify products at

the six-digit level of the HS code. We consider different features of exporters according to

their monthly exports: the total export (and import) value, the number of products (NP ),

the number of export destinations (ND), the number of import origin countries (NO), the

Herfindahl-Hirschman indexes at the product level (HHp) and the destination level (HHd),

and a set of dummies for the destinations and origin countries and continents. We create a set

of dummies according to the Colombian department from which the product comes, a set of

dummies for the means of transportation used, and a set of dummies classifying the product

HS-chapter and HS-section. Moreover, we build two sets of dummy variables indicating

whether a firm has experience exporting in specific destinations and product sectors. We

also account for the accumulated exporting (importing) experience by summing up the total

value exported (imported) during the last twelve months. Furthermore, we create four size

dummies classifying firms according to the quartiles of the firm-level distribution of the total

monthly log-value of exports.

To measure the COVID-19 demand and supply shock, we use the information on

government contention measures coming from Hale et al. (2020), which consists of four

17More precisely, Yi,t = 0 if a firm is no longer active or is active but not exporting at time t.
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indexes (ranging from 0 to 100) representing the strength of the measures taken by countries

to contain the COVID-19 outbreak. The authors provide an economic index summarizing

economic policies (E), a health index summarizing health policies (H), a government index

describing the strictness of ‘lockdown style’ policies (G), and an overall government response

index called stringency index (S). The value of these indexes ranges from 0 to 100.18 We

build two variables at the firm level for each of the four indexes, one at the export and one

at the import side, by taking a weighted average of the country-level scores according to the

proportion of the total monthly value of exports (imports) that a firm ships (source) in each

country in 2019. We call these firm-level indexes for a firm i “Containment Indexi,j,z”, with

j = {E,H,G, S} and z = {Imp,Exp}.19

Our final data set is composed of 1,975 covariates. They are presented in detail in Table

Appx.1 of Appendix B.

4 Results

4.1 Selection of the machine learning algorithm

We evaluate and contrast the outcomes of several ML techniques against a benchmark logistic

regression, aiming to identify the model with superior prediction performance, which is

crucial for the consistency of our T-Learner estimator. The out-of-sample predictive efficacy

of our empirical models is crucial, given our goal to reconstruct an unobserved counterfactual.

The complexity of this task arises from its high dimensionality and complex interdependencies

between firms and products from various sectors and export destinations. While an approach

focusing on in-sample prediction accuracy might overfit, ML techniques optimally balance

the bias-variance trade-off for out-of-sample predictions.20

We examine four distinct models: Logit, Logit-LASSO, Logit-Ridge, and Random Forest

(RF). The traditional choice for binary dependent variables, Logit, serves as our baseline. Even

though literature often shows ML techniques outperforming traditional models with numerous

predictors, we have included Logit results for comparison. The main idea of Logit-LASSO is

to mitigate overfitting by introducing a penalty term in the Logit log-likelihood function

that forces the parameters associated with the less relevant predictors to be exactly zero.

On the other hand, Logit-Ridge reduces the coefficients of less significant predictors without

eliminating any of them, proving especially useful when many variables play an important

role. The main idea behind Random Forest is the wisdom of crowds because it combines

the predictions of many uncorrelated models (the trees) obtained by randomly re-sampling

18These indexes are released daily. We average this information at the monthly level.
19The value of the Containment Stringency Index Import for firms that are not importing corresponds

to the value of the Containment Stringency Index for Colombia (as firms are sourcing all their inputs
domestically).

20Hyperparameter tuning through cross-validation or other theory-driven methods is often critical in
order to avoid overfitting.
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observations and explanatory variables.21 For Logit, Logit-Ridge, and Logit-LASSO models

we include interactions between the size of the company and some of the main product

characteristics, industry, sector, means of transportation as well as with destination country

dummies. Notice that Random Forest uses the variables sequentially and, therefore, with

a large enough number of trees, it is not necessary to explicitly introduce interactions as

explanatory variables, i.e., the model automatically takes into account the interactions that

are useful to accurately predict the outcome.22 The prediction analysis is repeated for all

months between January-December 2020. In Appendix E we perform a series of robustness

tests for alternative ML methods (XGBoost and SVM) and panel cross-validation. Although

panel cross-validation is more complicated, the results are largely consistent with those in

the main text.

Table 3 shows the goodness of fit of the model’s predictions using two widely used

classification metrics: Root Mean Square Error (RMSE) and the Area Under the Receiver

Operating Curve (AUC). The best value for the RMSE is 0, which indicates optimal accuracy

with no fixed upper limit. The AUC reaches a value of 0.5 for random predictions and 1 when

the outcomes are classified without error. Our preferred metric is the RMSE. The reason

is twofold. First, our analysis focuses on estimating predicted probabilities of exporting,

rather than producing binary classifications. The key object of interest is the probability of

continuing to export in the future, conditional on covariates and treatment status, which is

central to counterfactual analysis. In this setting, thresholding probabilities to assign binary

labels (e.g., classifying 0.51 as 1 and 0.49 as 0) can lead to substantial misrepresentation of

the underlying uncertainty, particularly in marginal cases.

Second, model performance in our context is evaluated based on how well the predicted

probabilities approximate the true (unobserved) probabilities.

The AUC-ROC is provided as an alternative threshold-independent measure of the quality

of the fit. The results are consistent when using different measures of goodness of fit.

The table’s upper part displays the accuracy of predictions for the probability of exporting

in 2019 based on 2018 exporter data, serving as an out-of-sample performance benchmark

in a pre-COVID-19 context using cross-validation. Here, the Logit-LASSO and RF models

arise as top performers. The table’s middle section also shows the accuracy of models

estimated using the exporters’ characteristics in 2018 to explain their observed outcomes

in 2019; however, these models are now tested using the set of exporters of 2019 and their

observed outcomes in 2020. If the functions f 0
t , which represent the relationship between the

explanatory variables and the outcome without the pandemic, are sufficiently similar for the

21Note that it is important to optimize (tune) the hyperparameters of the models for an accurate prediction.
These are the hyperparameters we tuned in our models: Ridge; [10−4, 102], best 100; Logit-LASSO; [10−4, 102]
best 101; RF, following Probst et al. (2019); n estimators: [100, 200, 500], best 500; max features: [‘sqrt’,
‘log2’, None], best sqrt; max depth: [5, 7, 10], best 7; max leaf nodes: [3, 6], best 6; min samples split: [2, 8],
best 2.

22For more information about all the features included to build the SUM and SAM see Table Appx.1 in
Online Appendix B.
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year before the pandemic and for the year 2020 (f 0
2019 and f 0

2020; see assumption (ii)), we

expect the accuracy of f̂ 0
2019 to be similar in the first three months of 2020 (when there is

likely no relevant COVID-19 effect in Colombia) as in the same months of 2019. Indeed, as

expected, the accuracy of Logit-LASSO and RF in January, February and March remains

unchanged compared to the accuracy found in the upper part of the table. However, in the

middle part of the tables, a decrease in accuracy can be observed after April, highlighting

the challenges of a model not trained on COVID-19 data when forecasting in an environment

affected by COVID-19.

The models in the lower part of Table 3 are trained and tested with the universe of

exporters in 2019 and their observed outcomes in 2020. We use these models to create the

SAM forecasts. The accuracy of the predictions is very similar to that obtained with the

SUM for 2019 and for the first three months of 2020. Our analysis is crucial to achieve

accurate predictions because the unbiasedness of our treatment effect estimators depends on

the quality of the (counterfactual) prediction accuracy. Both the SUM and the SAM show

an acceptable level of accuracy when predictions are made with Logit-LASSO and Random

Forest.
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Table 3: Goodness of Fit for SUM and SAM in 2018/19 and 2019/20

RMSE AUC

Logit-LASSO Logit-Ridge Random Forest Logit Logit-LASSO Logit-Ridge Random Forest Logit

Goodness of Fit for SUM in 2018/19

Jan 0.40 0.45 0.41 0.64 0.73 0.53 0.73 0.59

Feb 0.41 0.45 0.41 0.64 0.70 0.50 0.71 0.58

Mar 0.41 0.44 0.41 0.65 0.70 0.56 0.71 0.57

Apr 0.40 0.43 0.40 0.63 0.73 0.59 0.73 0.60

May 0.40 0.44 0.41 0.64 0.72 0.52 0.71 0.59

Jun 0.40 0.45 0.41 0.64 0.71 0.50 0.72 0.59

Jul 0.40 0.45 0.40 0.66 0.73 0.50 0.73 0.55

Aug 0.41 0.45 0.40 0.64 0.70 0.51 0.72 0.58

Sep 0.41 0.45 0.40 0.64 0.72 0.50 0.71 0.58

Oct 0.40 0.44 0.41 0.64 0.73 0.58 0.74 0.58

Nov 0.41 0.45 0.41 0.64 0.71 0.51 0.72 0.57

Dec 0.41 0.45 0.41 0.64 0.70 0.50 0.71 0.58

Goodness of Fit for SUM in 2019/20

Jan 0.41 0.45 0.41 0.75 0.72 0.53 0.72 0.49

Feb 0.41 0.45 0.42 0.64 0.69 0.50 0.69 0.56

Mar 0.40 0.44 0.41 0.63 0.72 0.54 0.73 0.59

Apr 0.48 0.50 0.49 0.70 0.67 0.56 0.66 0.51

May 0.46 0.48 0.46 0.63 0.69 0.51 0.69 0.60

Jun 0.43 0.47 0.44 0.63 0.68 0.50 0.68 0.59

Jul 0.42 0.46 0.43 0.63 0.70 0.50 0.69 0.59

Aug 0.42 0.45 0.43 0.63 0.68 0.51 0.69 0.58

Sep 0.42 0.45 0.42 0.63 0.69 0.50 0.70 0.59

Oct 0.42 0.45 0.43 0.63 0.71 0.59 0.70 0.60

Nov 0.41 0.45 0.41 0.63 0.71 0.51 0.71 0.59

Dec 0.42 0.46 0.42 0.63 0.69 0.50 0.69 0.58

Goodness of Fit for SAM in 2019/20

Jan 0.41 0.45 0.41 0.71 0.73 0.58 0.74 0.50

Feb 0.41 0.46 0.42 0.70 0.70 0.50 0.70 0.49

Mar 0.40 0.46 0.40 0.71 0.73 0.50 0.73 0.50

Apr 0.42 0.47 0.42 0.69 0.74 0.66 0.73 0.52

May 0.41 0.46 0.41 0.71 0.76 0.74 0.77 0.50

Jun 0.42 0.46 0.42 0.72 0.73 0.69 0.73 0.48

Jul 0.41 0.45 0.42 0.69 0.73 0.63 0.72 0.51

Aug 0.41 0.46 0.42 0.69 0.72 0.50 0.72 0.53

Sep 0.42 0.47 0.42 0.67 0.71 0.50 0.70 0.55

Oct 0.42 0.46 0.42 0.70 0.72 0.50 0.71 0.52

Nov 0.41 0.45 0.41 0.71 0.72 0.52 0.72 0.49

Dec 0.41 0.45 0.42 0.70 0.71 0.51 0.70 0.51

Notes: Results are obtained based on a 5-fold cross-validation strategy. RMSE and AUC are averaged across

folds.
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4.2 Evaluation of the COVID-19 effect

Both Logit-LASSO and Random Forest reach high accuracy levels in the export status

prediction. As explained in section 2, the predicted probabilities are used to estimate the

average monthly effect of the COVID-19 shock as the (monthly) average of α̂i (the difference

between the firm-level probabilities of success predicted by the SUM and the SAM.), ¯̂α.

They are presented in Figure 1.
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Figure 1: Average Individual Treatment Effect, by months, comparing Logit-LASSO and RF.
Standard errors were obtained with 100 bootstrap replications. Confidence intervals for a 5%
significance level.

Given the presumption that firms suffered a negligible COVID-19 shock impact during the

initial three months of 2020, the treatment effect estimates for this period can be viewed as a

placebo test, reminiscent of the in-time placebo test routinely employed in Synthetic Control

Methods (Abadie et al., 2015). Detecting a significant COVID-19 effect in the months

preceding the actual economic shock would suggest that our model mechanically estimates

a COVID-19 effect even in the absence of the stated shock. We conduct these placebo

studies also conditioning on exogenous firms’ characteristics observed in 2019 by estimating

COVID-19 effects for selected subsamples of firms according to such characteristics. We
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interpret these additional placebo studies as a robustness check on our results on treatment

effect heterogeneity.

As shown in Figure 1, the probabilities obtained from the SUM and the SAM are

almost identical on average for January, February, and March. This result is reassuring

since only from March 25, 2020, the Colombian government implemented a complete and

mandatory lockdown.23 More in general, we can conclude that our identification strategy is

not mechanically recovering COVID-19 effects for a period with low incidence in Colombia

and in the rest of the world. We find that the peak of the COVID-19 effect is in April 2020,

when we estimate an average difference between the predicted probabilities of exporting of

nearly 20 percentage points. In the following months, the estimated average effect declines

with time.

The results indicate that both Logit-LASSO and RF models yield comparable performances.24

Given their good performance and considering that Logit models are frequently used in

similar contexts, we opt for Logit-LASSO. It aligns with the conventional approaches and

offers greater interpretability as an extension of the traditional model.25

The results obtained using the AIPW-Double ML estimator (with 5-fold cross-fitting and

nuisance parameters estimated with Generalized Random Forest), which are shown in Figure

Appx.12 in the Appendix, are equivalent. It is also interesting to notice that estimated ATT

and ATE{ts,ts−1} are practically the same. This happens because the distribution of the

explanatory variables is exactly equal between the treated and the control group, as it is

shown in Figure Appx.13 that reports the results of the estimated propensity score for the

two groups.

Figure 2 reports the estimated CATEz by industry, that is the Conditional Average

Treatment Effect for those units belonging to different industries. It shows evidence of

substantial variations in the quarterly estimated average individual treatment effect by

industry. On the one hand, during the first, third, and fourth quarters of 2020, there is no

evidence supporting the existence of sectoral heterogeneity in the COVID-19 effect, and the

COVID-19 shock is economically and statistically insignificant. Therefore, concentrating

on the results for the first quarter, we are able to reject the existence of an effect even

within sectors.26 On the other hand, during the second quarter of 2020, Colombian exporters

belonging to almost every industry are found to significantly reduce their probability of

surviving in the international markets. This decline is particularly pronounced in industries

such as Textiles, Footwear, and Jewelry. However, industries like Food Preparations and

23See Appendix A for a detailed description of the measures taken in Colombia in the midst of the
COVID-19 crisis.

24This is somewhat expected since in Künzel et al. (2019) meta-learners are said to provide better
outcomes with generalizable ML-algorithms that perform well for a large variety of data sets.

25Non-reported results using RF are equivalent and available upon request.
26We have conducted other similar placebo studies conditioning on other variables (e.g., the main

destination of exports, the main origin of imports, via (air, land, sea), industry, exported value, imported
value) and in all the considered subsamples we do not estimate any significant effect of COVID-19.
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Vegetables saw minimal changes in their survival probabilities due to the COVID-19 shock.

Quarter 3 Quarter 4
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Figure 2: The quarterly mean difference in the predicted probability of success (SAM vs. SUM) by
industry, using the Logit-LASSO predictions. Standard errors were obtained with 100 bootstrap
replications. Confidence intervals for a 5% significance level.

4.3 Heterogeneity of the COVID-19 effect on Colombian exporters

In this section, we investigate the determinant of possible treatment effect heterogeneity.

Figures 3 and 4 show the estimated Sorted Partial Effects (SPE) and Average Partial Effects

(APE), which are obtained as explained in section 2 by month and aggregating all the months,

respectively. The two figures also report the 95% confidence intervals with blue bands for

SPE and black dashed lines for APE.

Significant treatment effect heterogeneity is observed for April and May, with June

showing a milder effect. The statistically significant (negative) estimated values of α∗(u) are

primarily confined to the distribution’s left tail. However, from July onwards, the confidence

intervals of the SPEs overlap with those of the APEs, indicating an absence of treatment

effect heterogeneity. Interestingly, in the pre-pandemic months, the SPEs closely aligned with

the APEs (estimated to be zero). This demonstrates that individual placebo treatment effects

are not statistically significant throughout the distribution, not just on average, reinforcing

the robustness of our methodology across the entire distribution of treatment effects.

To identify the determinants of treatment effect heterogeneity, we examine the difference

in means (CADiff) of firm characteristics between the most and least affected groups in

27



−0.4

−0.2

0.0

0.2

0 25 50 75 100
Percentile index LASSO

C
ha

ng
e 

pr
ob

ab
ili

ty
 to

 e
xp

or
t d

ue
 to

 C
O

V
ID

−
19

SPE APE

Figure 3: Annual Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19 on
Colombian firm export’s status. The treatment effect is calculated as a difference between SAM
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

Table 4. These groups are defined by whether their estimated αi is lower than α∗(25th) or

greater than α∗(75th), respectively. Therefore, we compute the raw difference in the means

of the covariates between the most and the least affected firms by regressing the variables

of interest on a constant and a dummy q = 1{αi≤α∗(25th)} for the observations for which

estimated αi ≤ α∗(25th) or αi ≥ α∗(75th). Then, we also provide the difference in adjusted

means once we have controlled for the firm sector and month of the year. Controlling for

sector and month allows us to perform a ceteris paribus analysis, i.e., to dig into the effects

of COVID-19 within specific sectors and specific months.

Table 4 is divided into 3 columns according to the control variables included in the

regressions: in the first column, we show the unconditional average difference in the firms’

characteristics between the most and least affected firms; in the second column, we control

for the firm sector; and, in the third column, we control for firm sector and month of

observation. The firm characteristics that we consider to explore the sources of COVID-19

treatment effect heterogeneity among Colombian exporters are observed in 2019 (the year

before receiving the treatment). First, we check whether the estimated individual treatment

effect (TE) differs between the firms contained in the two groups by using the TE as the

dependent variable. We then move to firm-sector specific characteristics. In particular, the

first set of firm characteristics that we use as dependent variables are dummies indicating

the industry where the exporters operate.27 We also investigate the CADiff for the means

27We aggregate the 22 industries defined in the main analysis as follows. “Agriculture” contains Animals
(01), Vegetables (02), Fats/oils (03), and Prepared Foodstuffs (04). “Chemicals” includes Chemical (06), and
Plastics (07). “Manufacturing” contains Machinery (16), Vehicles (17), and Manufactured (20). “Metals”
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Figure 4: Monthly Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19
on Colombian firm export status. The treatment effect is calculated as a difference between SAM
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

of transportation and the months when firms operate. Moreover, to account for the role

of diversification patterns, we also consider as dependent variables the number of export

destinations (ND), import origins (NO), and products (NP ) exported. The weighted

Containment Stringency Index that exporters face when exporting (importing) allows us to

study to what extent treatment effect heterogeneity depends on these firm-specific measures

of exposure to COVID-19 through their activities on international markets. A traditional

continuous-DID strategy would have used these intensity variables as treatment variables,

assuming that any COVID effect would emanate through them. Finally, including the total

aggregates Mineral (05), Cement (13), Jewelries (14), and Metals (15). “Special” includes Precision
Instruments (18), Arms (19), Art (21), and Special (22). “Textile” contains Leather (08), Textile (11), and
Footwear (12). Finally, “Wood” aggregates Wood (09), and Paper (10). See Table Appx.2 in the Online
Appendix for the complete industry names.
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Table 4: Estimated differences in means of the estimated treatment effect and other covariates
between the group of more affected and the group of less affected firms (CADiff) applying the
classification analysis to the SAM − SUM estimates

Outcome variable (1) (2) (3)

TE −0.3130∗∗∗ −0.3060∗∗∗ −0.2790∗∗

Agriculture -0.1940
Chemicals -0.0057
Manufacturing -0.0092
Metals 0.0134
Special 0.0056∗∗∗

Textile 0.1600∗∗∗

Wood 0.0292∗∗∗

Air 0.2030∗ 0.1680∗∗∗ 0.2040∗∗∗

Land 0.0340 0.0249 0.0170
Sea −0.2360∗∗∗ −0.1920∗∗∗ −0.2200∗∗∗

Jan -0.0738 −0.0766∗∗∗

Feb -0.0710 −0.0768∗∗∗

Mar -0.0751 −0.0773∗∗∗

Apr 0.1860∗∗∗ 0.1950∗∗∗

May 0.1770∗∗∗ 0.1820∗∗∗

Jun 0.0754 0.0784∗∗∗

Jul 0.0132 0.0159
Aug 0.0021 0.0008
Sep −0.0412∗∗∗ −0.0406∗∗

Oct −0.0604∗∗∗ −0.0609∗∗

Nov −0.0723∗∗∗ −0.0763∗∗

Dec -0.0557 −0.0621∗∗

Number of export destinations (ND) -0.1990 -0.1640 -0.2480
Number of import origins (NO) -1.7470 −1.9820∗∗∗ −2.4440∗∗

Number of exported products (NP) 0.2400 -0.2570 -0.3440
Containment Index Stringency Export 19.3600∗∗∗ 19.5100∗∗∗ 7.1800∗

Containment Index Stringency Import 19.1100∗∗∗ 20.8000∗∗∗ 7.2490∗∗∗

Value Exported (log) −0.5110∗∗∗ -0.4490 −0.5700∗

Value Imported (log) −1.8160∗∗∗ −2.2020∗∗∗ −2.6860∗∗∗

Deviation from sectoral mean ✓ ✓
Deviation from monthly mean ✓

Notes: column (1) does not include sector or month variables in the regression; column
(2) includes sectors in the regression; and, column (3) includes both the sector and month
variables. ∗∗∗ means significant at 1%, ∗∗ at 5%, and ∗ at 10%. Standard errors are obtained
by bootstrapping the whole estimation process, and joint p-values are adjusted to consider
the simultaneous testing of all variables.

value exported (imported) by firms –expressed in logarithm– among the variables for which

the CADiff is computed highlights the difference in the quantities sold (purchased) by most

and least affected companies. A discussion of the main findings follows.

Considering the estimated individual treatment effects (TE) as a dependent variable, we

find a negative and significant difference between most and least affected firms independently

of the set of controls employed. These results show that the most affected exporters–i.e.,

those located in the first SPE quartile distribution–experienced a decrease in the probabilities

of exporting between 27.9 and 31.3 percentage points lower than the one experienced by the

least affected firms–i.e., those located in the last SPE quartile.

We found significant differences among firms when examining how different aggregate
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sectors are affected. For instance, we detect that the share of textile firms among the most

affected 2019 exporters is 16 percentage points higher with respect to the one estimated for

the group of the least affected firms. Likewise, there is a difference of 2.9 percentage points

in the presence of wood exporters between the most and least affected groups.

We also detect the existence of treatment effect heterogeneity associated with the means of

transportation used by exporters in 2019. On the one hand, there are 16.8 to 20.4 percentage

points more exporters using air transportation among the most affected than among the

least affected firms. However, there are 19.2 to 23.6 percentage points fewer Colombian

exporters using the sea for shipping among the most impacted firms compared to the least

affected ones (Nitsch, 2022).

Looking at the treatment effect heterogeneity associated with months, the first pattern

we notice is that only the months from April to August have a positive estimated parameter.

However, only April and May estimated differences are statistically significant. There are

18.6 to 19.5 percentage points (17.7 to 18.2) more firms in April (May) among the most

affected than among the least affected firms. From September to November, the coefficients

become negative and significant, indicating the beginning stages of recovery.

To evaluate how ex-ante exporter diversification affects the COVID-19 effect, we explore

the estimated parameters associated with ND, NO, and NP . We want to investigate whether

Colombian exporters’ supply chain diversification and export destination diversification help

mitigate the COVID-shock. We do not find compelling evidence that ex-ante diversification

helps to face a shock of this kind, as we can evince from the estimated parameters associated

with ND, NP , and, in the first column, to NO. Following the reasoning of Lafrogne-Joussier

et al. (2022), which exploits the COVID-19 crisis to study the export consequences of a

country-specific supply-side shock by concentrating on the differential import exposure of

French firms to the Chinese early lockdown, one possible explanation is that firms cannot

substitute away the partner (or the product) under COVID-19. Another possible explanation,

which they offer, is that exporters that do not diversify ex-ante can benefit from some form

of ex-post diversification. However, when they restrict the analysis to homogeneous inputs,

Lafrogne-Joussier et al. (2022) find weak evidence of a larger COVID-19 effect for firms with

non-diversified inputs. They restrict the sample to homogeneous inputs because they want

to analyze the COVID-19 effect among inputs expected to be substituted. Similarly, once we

control for the sector and, therefore, inter alia, for the fact that some sector has relatively

more diversification potential, the negative estimated difference turns statistically significant.

Indeed, within sectors, the most affected Colombian exporters tend to import from 1.98

fewer countries in 2019 than the least affected firms. The economic size of this estimate is

large as approximately 60 per cent of Colombian exporters are not integrated into global

value chains (they do not import), and the mean of NO is approximately 4.16 origins.

The CADiff estimated when using the Export (Import) Containment Stringency Index

as dependent variables provides insightful hints on the difficulties of Colombian firms

31



in exporting (importing) to (from) countries adopting severe stringency measures. In

particular, the most affected Colombian exporters face, on average, a higher Export (Import)

Containment Stringency Index than those faced by least affected firms by 7.18 to 19.51 (7.25

to 20.80) points, depending on the column in the table.28

Finally, the least affected firms exported (imported) 156.7% to 176.83% (614.7% to

1467.3%) more value in 2019 than the most affected firms. As expected, Colombian exporters

trading in larger volumes (in value) are more resilient under a COVID-19 scenario. As with

diversification, the comparison of the export and import side reinforces the idea that having

more experience in sourcing inputs from abroad decreases the strength of the shock.

Our results not only show the uneven impact of the COVID-19 crisis across different

covariates, but also highlight the potential of our methodology as a diagnostic tool for targeted

policy interventions. By identifying the most affected firms and sectors, our framework can

support the allocation of scarce public resources and the design of sector and firm-specific

support programs aimed at improving the resilience of the most vulnerable exporters.

4.4 Estimations based on Y − SUM

In this paragraph, following Fabra et al. (2022) and Cerqua and Letta (2020), we use the

estimators based on Eq. (13). These estimators capture the differences between the observed

outcome, Y (binary variable accounting for the success of a Colombian exporter in 2020),

and its counterfactual predictions (SUM). As shown in Figure 5, when the interest lies

in estimating the average treatment effects (by months in this case), the results based on

Y −SUM do not differ from those obtained by using SUM−SAM . We obtain similar results

for the two methodologies also in terms of conditional treatment effects based on subgroups

defined on firm characteristics (e.g., by industry or main export destination country).

28Remember that the Index ranges from 0 to 100.
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Figure 5: Mean difference in the predicted probability of success (SAM vs. SUM / Y vs. SUM) by
month, using Logit-LASSO predictions and (SAM vs. SUM). Standard errors were obtained with
100 bootstrap replications. Confidence intervals for a 5% significance level.

The fact that the two estimators consistently find zero estimated effects for all 2019

exporters (and for subgroups based on the values of individual observables) during the first

quarter suggests that the estimation error of both SUM and SAM, E0 and E1 respectively,

goes to zero when we average the individual treatment effects across the whole distribution of

2019 exporters (or in subgroups defined by one of the possible dimension of treatment effect

heterogeneity defined by observables; e.g., by industry or main export destination country).

However, since our goal is to identify the main dimensions of treatment effect heterogeneity

by classifying units with the highest and lowest estimated treatment effects, we need also to

evaluate how well these alternative estimation strategies perform in identifying treatment

effects at the extremes of the distribution of treatment effects. Figure 6 shows the average

of the estimated treatment effects obtained with the two estimators for the observations

whose estimated treatment effects (by using Y − SUM) are contained in intervals defined

by two consecutive values of the estimated percentiles of Y − SUM . On the one hand, the

estimator based on Y − SUM is also identifying significant treatment effect heterogeneity

in the first quarter, suggesting that the distribution’s estimation error, E0, is not zero on
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Figure 6: Estimated average treatment effects (SAM − SUM , red line, and Y − SUM , blue line)
by quarter for observations contained in intervals defined by the estimated percentiles of Y −SUM .

average in the tails. Moreover, the shape of the Y − SUM curve is similar across quarters,

suggesting that this estimation method will be prone to misclassifying units when using the

Sorted Effects strategy suggested above. On the other hand, in the first quarter, the shape

of the SAM − SUM curve is flat, showing a constant average estimated effect that is zero

along the whole distribution of the Y − SUM estimated effects, suggesting that by using

the SAM we are able to wash out the estimation error of the SUM because E1 = E0.

This behavior of the estimators based on SAM − SUM is consistent with the results

shown in Figure 4 for the Sorted Effects analysis. Figure 7 shows that the intuition on the

inadequacy of the Y − SUM -based estimators to identify treatment effects on the tail of

the distribution is also confirmed by the Sorted Effects analysis based on this estimation

strategy. When using the Y − SUM individual level estimates to feed the SPE methodology,

we find economically and statistically significant effects of the COVID-19 shock all along the

percentile distribution in the first quarter. While it is true that, on average, E0 tends to be

zero across all observations, these findings suggest that this is not true when we focus on

specific segments of the treatment effect distribution, particularly in the tails.

Table 5 presents the classification analysis results on the sources of treatment effect

heterogeneity when the CADiff is estimated using the (Y − SUM) approach. For all the

firm characteristics we examined, we found no statistically significant difference between

the most and least affected groups. This is consistent with the inability of the Y − SUM
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Figure 7: Monthly Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19 on
Colombian firm export’s status. TE is calculated as a difference between the observed outcome (Y )
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

approach to consistently estimate treatment effects in the tails of the α’s distribution and,

consequently, to identify the groups of the most affected and the least affected firms. In

other words, such groups will be contaminated by the inclusion of firms wrongly classified

due to the estimation error E0.

4.5 Validation of the CATE models

As it is well established in the causal inference literature, the Conditional Average Treatment

Effect (CATE) coincides with both the Conditional Average Treatment Effect on the Treated

(CATT) and the Conditional Average Treatment Effect on the Untreated (CATU) when

the conditioning set includes all explanatory variables (those satisfying the conditional

independence assumption). This is shown in Figure 8, where we represent the estimated
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heterogeneous treatment effects for January obtained by using the T-Learner for CATE{ts−1,ts},

CATU and CATT . The latter coincides with our estimator α̂i. Finally, we also report the

CATT obtained with ˆ̂αi.
29

Figure 8: Heterogeneous treatment effects estimated in the A sample and predicted in the M sample
for the month of January.

For the four estimators, we use Random Forest to estimate the potential outcomes. In

our context, the distribution of observable characteristics is identical for firms that were

observed exporting in 2018 (control group) and those exporting in 2019 (treated group). In

Figure 8, this implies that the density of the CATT , CATU and CATE{ts−1,ts} estimated

with the T-Learner are the same. In this paragraph, we will compare results obtained with

the T-Learner and other widely used estimators focusing on the CATE{ts−1,ts}.

The primary aim of this section, which can be interpreted as a robustness check of the

previous results, is to follow the procedure described by Chernozhukov et al. (2024) to apply

the methodology of Chernozhukov et al. (2023) to a research design characterized by the

Conditional Independence Assumption. We will compare the results obtained with SPE (and

CA) with those obtained here by using GATES and CLAN. Finally, we will also estimate

the Best Linear Predictor (BLP) of the CATE, a methodology to statistically test if a CATE

estimator captures any statistically significant indication of treatment effect heterogeneity.

As an additional robustness check, we will also compare the results obtained with our

T-Learner with those obtained by using other commonly adopted methods in the literature

of causal inference (Chernozhukov et al., 2024), namely: the S-Learner, the R-Learner, the

29Notice that we have exactly the same result obtained in Figure 7 for January: the estimators based on
Y–SUM produce a biased estimated distribution of the conditional treatment effects.
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DR-Learner and the Generalized Random Forest (that we also call Causal Forest). An

overview of the adopted learners can be found in Appendix F.

Throughout the section, we will randomly divide the observations in an auxiliary (A),

consisting in 60% of observations, and a main (M) sample as recommended by Chernozhukov

et al. (2023).30 The models used to identify CATE are estimated using A and are tested in

M. Chernozhukov et al. (2023) show that under mild regularity conditions the estimated

parameters are normally distributed, conditional on the random sample split on A. To take

into account the uncertainty originating from the splitting procedure, they also propose a

multisplitting inference strategy in which the researcher repeat the estimation using different

random division in splits and report the median of those estimates, along with the medians

of the corresponding confidence intervals an p-values.31

Following Chernozhukov et al. (2023), we start by statistically testing the capacity of

our estimators to capture treatment effect heterogeneity by using the BLP. As previously

mentioned, Chernozhukov et al. (2024) propose a strategy to apply their methodology in

a non-experimental setting. This approach relies on the pseudo-outcome—computed on

the main sample M—of the AIPW-DML estimator (using cross-fitting with 5-Folds and

Generalized Random Forest), which is reported again below:

ATE
{ts,ts−1} = Ŷ 1

{ts,ts−1} − Ŷ 0
{ts,ts−1}︸ ︷︷ ︸

outcome predictions

+
D{ts,ts−1}(Y{ts,ts−1} − Ŷ 1

{ts,ts−1})

ê(X{ts−1,ts−2})
−

(1−D{ts,ts−1})(Y{ts,ts−1} − Ŷ 0
{ts,ts−1})

1− ê(X{ts−1,ts−2})︸ ︷︷ ︸
weighted residuals

(17)

where, as a reminder, ê(·) represents the propensity score.

If the CATE model ∆̂(X{ts−1,ts−2}) is well-specified, then the best linear predictor of

the true CATE using the variables (1, ∆̂(X{ts−1,ts−2})) should yield a statistically significant

coefficient on ∆̂(X{ts−1,ts−2}). Given that E[Ỹ ATE|X] = ∆(X), the BLP we estimate takes

the following form:

(β1, β2) = argmin
b1,b2

E
[(

Ỹ ATE
{ts−1,ts} − b1 − b2(∆̂(X{ts−1,ts−2})− E[∆̂(X{ts−1,ts−2})])

)2
]

where ∆̂(X{ts−1,ts−2}) is the CATE estimated in A and predicted in M .

Under regularity conditions, indeed, the coefficient β2 converges in population to

β2 =
Cov(∆(X{ts−1,ts−2}), ∆̂(X{ts−1,ts−2}))

Var(∆̂(X{ts−1,ts−2}))

In an ideal case where ∆̂(X{ts−1,ts−2}) is perfectly aligned with the true CATE, we expect

β2 = 1. Hence, a statistically significant and positive β2 provides evidence that the CATE

model captures heterogeneous treatment effects.

For each month, Table 6 presents the median of the estimated β2 coefficients of the

30Chernozhukov et al. (2023) require that the auxiliary sample be larger than the main sample.
31The results of this section using a single split are also available upon request.
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CATE across 100 (A,M) splits with the relative median p-value for all the months and the

mentioned CATE estimators (we also provide the R2 of the regression).32 The results show

that for the months of April and May, all learners achieve highly significant β2 coefficients

(p-values ≤ 0.001), with magnitudes closer to 1 compared to other months—indicating that

these models successfully detect meaningful treatment effect heterogeneity during those

periods. In these months, the T-, R-, DR-learners, and the Generalized Random Forest

exhibit comparable performance, with the T-Learner attaining slightly larger coefficients. In

contrast, in earlier months (January–March), and late in the year (September–December), all

learners yield low and statistically insignificant coefficients as expected, since in these periods

the effect is constant and estimated to be zero. In the mid-year months (June–August)

the estimated β2 coefficients are moderately significant. Overall, Table 6 confirms the

findings from previous sections, where we observed a sizable and heterogeneous COVID-19

impact between April and July, followed by a gradual recovery with decreasing heterogeneity

beginning in August and a return to negligible constant effects by October.

32Following Chernozhukov et al. (2023), the goodness-of-fit of a CATE estimator ∆̂(X{ts−1,ts−2})

in the BLP framework is indexed by the signal strength measure Ξ := |β2|2 · Var(∆̂(X{ts−1,ts−2})) =

Corr2(∆(X{ts−1,ts−2}), ∆̂(X{ts−1,ts−2})) ·Var(∆(X{ts−1,ts−2})). Maximizing Ξ is equivalent to maximizing
the correlation between the estimated and true CATE functions, which in practice corresponds to maximizing
the R2 of the BLP regression. Thus, the learner with the highest R2 in a period is the one picking-up an
higher degree of treatment effect heterogeneity.
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Month S-learner T-learner R-learner DR-learner Causal RF

Jan

-3.132

(0.443)

R2 = 0.00003

-0.361

(0.408)

R2 = 0.00035

-0.184

(0.549)

R2 = 0.00018

-0.143

(0.551)

R2 = 0.00018

-0.474

(0.588)

R2 = 0.00014

Feb

-0.466

(0.522)

R2 = 0.00024

-0.164

(0.566)

R2 = 0.00017

0.095

(0.596)

R2 = 0.00014

0.137

(0.663)

R2 = 0.00009

0.044

(0.545)

R2 = 0.00017

Mar

2.023

(0.487)

R2 = 0.00024

0.236

(0.506)

R2 = 0.00022

0.169

(0.608)

R2 = 0.00013

0.158

(0.592)

R2 = 0.00014

0.665

(0.357)

R2 = 0.00042

Apr

3.933

(0.000)

R2 = 0.0223

1.395

(0.000)

R2 = 0.02493

1.352

(0.000)

R2 = 0.02168

1.379

(0.000)

R2 = 0.02176

1.824

(0.000)

R2 = 0.02186

May

3.304

(0.000)

R2 = 0.01023

1.193

(0.000)

R2 = 0.01486

1.295

(0.000)

R2 = 0.01431

1.306

(0.000)

R2 = 0.01484

1.733

(0.000)

R2 = 0.01382

Jun

3.393

(0.06)

R2 = 0.00161

0.702

(0.014)

R2 = 0.0029

0.842

(0.005)

R2 = 0.00345

0.822

(0.007)

R2 = 0.00325

1.415

(0.003)

R2 = 0.00395

Jul

3.751

(0.142)

R2 = 0.00102

0.591

(0.072)

R2 = 0.00149

0.534

(0.127)

R2 = 0.0010

0.516

(0.171)

R2 = 0.0008

1.161

(0.044)

R2 = 0.00135

Aug

5.443

(0.058)

R2 = 0.00172

0.685

(0.04)

R2 = 0.00292

0.961

(0.008)

R2 = 0.0033

0.956

(0.007)

R2 = 0.0033

1.471

(0.024)

R2 = 0.00231

Sep

0.985

(0.659)

R2 = 0.0000

0.183

(0.614)

R2 = 0.0001

0.184

(0.531)

R2 = 0.0000

0.141

(0.574)

R2 = 0.0001

0.331

(0.549)

R2 = 0.0001

Oct

3.641

(0.301)

R2 = 0.0004

0.363

(0.323)

R2 = 0.0004

0.382

(0.336)

R2 = 0.0005

0.447

(0.268)

R2 = 0.0000

0.769

(0.297)

R2 = 0.0004

Nov

1.411

(0.563)

R2 = 0.0001

0.068

(0.627)

R2 = 0.0001

0.116

(0.693)

R2 = 0.0000

0.106

(0.689)

R2 = 0.0000

0.379

(0.556)

R2 = 0.0001

Dec

2.387

(0.42)

R2 = 0.0002

0.214

(0.579)

R2 = 0.0001

0.429

(0.29)

R2 = 0.0004

0.411

(0.303)

R2 = 0.0004

0.561

(0.444)

R2 = 0.0002

Table 6: Coefficient β2 with their estimated median p-value across 100 A-M splits for the BLP
considering different estimators of the CATE. The same analysis has been done with a single split
without significant changes. Results are available upon request. P-values are clustered at the
individual level.

To evaluate heterogeneity in treatment effects using our estimated models ∆̂((X{ts−1,ts−2})),

we also use the Group Average Treatment Effects (GATES) following Chernozhukov et al.

(2023). We slice the distribution of the estimated CATE into K parts and we are interested
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in the average effect of firms within each slice. Table 7 displays the latter averages. Formally,

for a partition of the support of ∆̂(X{ts−1,ts−2}) into 4 quartile-based groups Gk := {∆ ∈ Ik},
the GATE for group Gk is defined as

γk := E[Ỹ ATE
{ts−1,ts} | Gk].

Situations where the γks are similar indicate that no systematic heterogeneity was

detected.

Group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S-Learner

1
0.005

(0.981)

-0.005

(0.981)

-0.032

(0.975)

-0.368

(0.001)

-0.263

(0.004)

-0.119

(0.003)

-0.085

(0.024)

-0.085

(0.178)

-0.026

(0.772)

-0.04

(0.966)

-0.011

(0.983)

-0.026

(0.979)

2
-0.016

(0.982)

-0.005

(0.986)

-0.003

(0.987)

-0.171

(0.003)

-0.176

(0.005)

-0.097

(0.006)

-0.054

(0.063)

-0.056

(0.144)

-0.027

(0.786)

-0.021

(0.878)

0.000

(0.980)

-0.012

(0.985)

3
-0.012

(0.985)

-0.008

(0.984)

0.001

(0.987)

-0.108

(0.000)

-0.133

(0.005)

-0.062

(0.005)

-0.034

(0.077)

-0.034

(0.164)

-0.024

(0.733)

-0.014

(0.799)

-0.004

(0.982)

-0.004

(0.988)

4
-0.028

(0.975)

-0.005

(0.978)

0.011

(0.983)

-0.082

(0.000)

-0.052

(0.006)

-0.028

(0.003)

-0.025

(0.078)

-0.025

(0.178)

-0.021

(0.773)

0.005

(0.979)

-0.011

(0.987)

-0.007

(0.982)

T-Learner

1
0.006

(0.987)

-0.003

(0.986)

-0.025

(0.979)

-0.387

(0.000)

-0.286

(0.003)

-0.120

(0.001)

-0.096

(0.023)

-0.096

(0.124)

-0.029

(0.799)

-0.031

(0.879)

-0.007

(0.988)

-0.025

(0.982)

2
0.000

(0.986)

-0.003

(0.983)

-0.016

(0.981)

-0.175

(0.002)

-0.173

(0.005)

-0.104

(0.003)

-0.046

(0.063)

-0.046

(0.163)

-0.019

(0.786)

-0.023

(0.899)

-0.006

(0.980)

-0.016

(0.984)

3
-0.012

(0.988)

-0.004

(0.985)

-0.005

(0.984)

-0.096

(0.002)

-0.123

(0.002)

-0.066

(0.003)

-0.026

(0.017)

-0.026

(0.177)

-0.028

(0.774)

-0.005

(0.774)

-0.011

(0.983)

-0.011

(0.983)

4
-0.028

(0.977)

0.003

(0.987)

0.016

(0.983)

-0.077

(0.001)

-0.047

(0.020)

-0.022

(0.004)

-0.019

(0.082)

-0.019

(0.182)

-0.016

(0.776)

0.006

(0.777)

-0.013

(0.981)

-0.003

(0.990)

R-Learner

1
0.006

(0.983)

-0.015

(0.980)

-0.031

(0.975)

-0.382

(0.004)

-0.304

(0.004)

-0.133

(0.004)

-0.087

(0.063)

-0.087

(0.115)

-0.022

(0.656)

-0.042

(0.636)

-0.014

(0.982)

-0.042

(0.966)

2
-0.004

(0.982)

0.002

(0.981)

-0.005

(0.983)

-0.179

(0.000)

-0.172

(0.003)

-0.101

(0.004)

-0.046

(0.061)

-0.046

(0.162)

-0.017

(0.688)

-0.011

(0.989)

-0.002

(0.989)

0.001

(0.984)

3
-0.019

(0.979)

-0.015

(0.986)

0.004

(0.988)

-0.105

(0.001)

-0.107

(0.006)

-0.068

(0.005)

-0.024

(0.063)

-0.024

(0.176)

-0.029

(0.777)

-0.015

(0.768)

0.000

(0.988)

0.001

(0.989)

4
-0.022

(0.983)

-0.002

(0.984)

0.005

(0.985)

-0.084

(0.005)

-0.053

(0.006)

-0.013

(0.010)

-0.033

(0.076)

-0.033

(0.174)

-0.015

(0.783)

0.006

(0.564)

-0.019

(0.982)

-0.009

(0.989)

DR-Learner

1
0.002

(0.987)

-0.014

(0.983)

-0.029

(0.976)

-0.383

(0.006)

-0.303

(0.000)

-0.134

(0.000)

-0.091

(0.028)

-0.091

(0.171)

-0.014

(0.782)

-0.041

(0.986)

-0.015

(0.984)

-0.032

(0.975)

2
-0.007

(0.985)

0.001

(0.983)

0.000

(0.985)

-0.168

(0.003)

-0.159

(0.001)

-0.106

(0.000)

-0.052

(0.06)

-0.055

(0.166)

-0.021

(0.689)

-0.013

(0.986)

-0.002

(0.984)

-0.006

(0.982)

3
-0.013

(0.988)

-0.012

(0.986)

0.000

(0.988)

-0.113

(0.005)

-0.105

(0.006)

-0.061

(0.002)

-0.029

(0.077)

-0.02

(0.172)

-0.023

(0.780)

-0.009

(0.967)

-0.006

(0.986)

-0.003

(0.987)

4
-0.023

(0.982)

-0.002

(0.986)

0.001

(0.982)

-0.081

(0.000)

-0.054

(0.004)

-0.014

(0.002)

-0.031

(0.075)

-0.031

(0.175)

-0.021

(0.644)

0.011

(0.878)

-0.015

(0.985)

-0.007

(0.986)

Generalized Random Forest

1
-0.004

(0.982)

-0.002

(0.989)

-0.036

(0.971)

-0.388

(0.002)

-0.303

(0.007)

-0.142

(0.000)

-0.098

(0.022)

-0.098

(0.122)

-0.022

(0.979)

-0.046

(0.964)

-0.015

(0.986)

-0.028

(0.978)

2
-0.008

(0.986)

-0.014

(0.989)

0.000

(0.985)

-0.166

(0.000)

-0.161

(0.007)

-0.111

(0.002)

-0.055

(0.056)

-0.055

(0.156)

-0.026

(0.976)

-0.015

(0.984)

-0.020

(0.983)

-0.016

(0.984)

3
-0.014

(0.984)

-0.005

(0.984)

0.002

(0.985)

-0.108

(0.001)

-0.131

(0.002)

-0.057

(0.006)

-0.035

(0.071)

-0.035

(0.171)

-0.025

(0.679)

-0.004

(0.981)

-0.016

(0.981)

-0.007

(0.982)

4
-0.021

(0.981)

-0.002

(0.984)

0.012

(0.982)

-0.081

(0.006)

-0.041

(0.005)

-0.010

(0.006)

-0.009

(0.085)

-0.009

(0.185)

-0.016

(0.682)

0.012

(0.986)

0.011

(0.985)

0.003

(0.989)

Table 7: Median GATES coefficients with their estimated median p-value across 100 A-M splits for
the GATEs considering different estimators of CATE. The same analysis was performed with a
single split with no significant changes. The results are available on request.

The results presented in Table 7 corroborate the findings from the main analysis. In
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particular, the placebo tests for the first three months of the year are successful (i.e., the

estimated GATES are all equal and not statistically significant) and the GATES estimates

are substantially larger in magnitude and statistically different during the COVID-19

months—specifically April, May, and June—with some residual evidence in July. In other

words, the probability of exporting declined significantly across all subgroups during these

months, with the impact varying by group, thereby confirming the presence of meaningful

treatment effect heterogeneity.

Among the different learners, the T-Learner and DR-Learner tend to exhibit more pronounced

variation in GATE values across quantiles, suggesting stronger sensitivity to heterogeneity

in treatment effects. The Generalized Random Forest also captures heterogeneity effectively,

especially in the upper quantiles, while the S-Learner generally shows less differentiation

across groups, indicating limited responsiveness to heterogeneity. Overall, the T-Learner

performs competitively, aligning well with the observed patterns of export decline and offering

reliable subgroup-specific estimates. Figure 9 provides a visual representation of the GATES

for the different estimators of CATE with the associated confidence level for the first split

(which are very similar to the more robust multisplit results in Table 7).
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Figure 9: GATES estimates from January, April, and October 2020. The results are shown for
the four quartiles according to CATE. In each graph, the colored bars are from left to right for
Generalized Random Forest (orange), DR-learner (purple), R-learner (green), S-learner (red) and
T-learner (blue). Figure Appx.11 in Appendix F shows the estimates for all months of 2020.
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Having the BLP and GATES analyses confirmed the substantial heterogeneity detected by

the SPE, it becomes particularly interesting to further explore the sources of these differences

following a procedure that is exactly the same of the one used in the previous CA analyses.

What is different here is the inference part. We repeat 100 times the split in A and M

samples, together with the calculation of the first and third quartiles of the distribution of

the estimated CATE and the comparison of the mean characteristics of the firms contained

in the tails of the distribution. Then we aggregate the results by taking the median of the

estimated difference in means and the corresponding p-values. More formally, let Xts−1

denote the vector of observed covariates. The CLAN compares the average covariate values

between the “least affected group” G1 and the “most affected group” GK , as defined by the

GATES framework.

Table 8 presents the results of the CLAN across various estimators. The results confirm

the findings from the CA analysis reported in Table 5, offering an additional diagnostic.

The CLANs in Table 8 highlights a consistent pattern of treatment effect heterogeneity

across industrial characteristics, export behavior, and time dummies. Notably, the difference

in means for sectors such as Agriculture, Textile, and Wood are significant across all

learners, with p-values close to zero. For instance, the Textile sector shows systematically

higher representation among more affected firms, especially under the R- and DR-Learners,

suggesting that sectoral affiliation plays a key role in shaping heterogeneity. This is broadly

aligned with the CA findings, where Textile also shows positive and statistically significant

estimate.

Temporal patterns are also consistent across methods. Months corresponding to the

COVID-19 peak (April–June) exhibit strong and positive CLAN differences, particularly

under the Generalized Random Forest. For example, April differences range from 0.30 to

0.36 across learners, all significant at the 1% level. These closely mirror the CADiff estimates

for the same months, validating the robustness of the temporal heterogeneity captured by

both approaches.

Differences in trade intensity are particularly stark. CLAN reveals substantial negative

differences in Value Exported (log) and Value Imported (log) across all estimators. These

results suggest that more severely affected firms are systematically smaller traders and

confirm the previous findings from CA.

Moreover, similar to the case of diversification, analyzing both the export and import sides

supports and reinforces the previous finding that greater experience in importing inputs

from abroad reduces the severity of the shock.
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T-Learner S-Learner R-Learner DR-Learner Generalized Random Forest

Outcome variable (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

Agriculture
-0.0653

(0.0000)

-0.0385

(0.0000)

0.0912

(0.0000)

-0.0916

(0.0000)

-0.0730

(0.0000)

-0.0534

(0.0000)

Chemicals
-0.007

(0.5916)

-0.0253

(0.0036)

-0.0112

(0.4618)

-0.0229

(0.0014)

-0.0225

(0.0085)

-0.0230

(0.0125)

Manufacturing
-0.019

(0.0186)

-0.0283

(0.0000)

-0.1183

(0.0000)

-0.0144

(0.0307)

-0.0175

(0.0380)

-0.0141

(0.1655)

Metals
-0.013

(0.1525)

-0.0195

(0.0140)

-0.0107

(0.0919)

-0.0175

(0.0290)

-0.0195

(0.0162)

Special
-0.0008

(1.0000)

-0.0034

(1.0000)

0.0015

(0.6307)

-0.0003

(1.0000)

-0.0009

(1.0000)

Textile
0.0939

(0.0000)

0.0707

(0.0000)

0.0996

(0.0000)

0.0932

(0.0000)

0.0769

(0.0000)

Wood
0.0228

(0.0000)

0.0111

(0.1662)

0.0297

(0.0000)

0.0277

(0.0000)

0.0176

(0.0039)

Air
0.1347

(0.0000)

0.1158

(0.0000)

0.2035

(0.0000)

0.1118

(0.0000)

0.2768

(0.0000)

0.1345

(0.0000)

0.1108

(0.0000)

0.1775

(0.0000)

0.1280

(0.0000)

0.1055

(0.0000)

0.1729

(0.0000)

0.1254

(0.0000)

0.1044

(0.0000)

0.3090

(0.0000)

Land
0.0051

(0.5944)

0.0049

(0.7076)

0.0029

(0.2341)

-0.0176

(0.0521)

0.0124

(0.1008)

-0.0067

(0.3091)

-0.0057

(0.3712)

-0.0092

(0.3296)

-0.0053

(0.4692)

-0.0023

(0.8440)

-0.0076

(0.3065)

-0.0106

(0.2261)

-0.0041

(0.4418)

-0.0135

(0.4765)

Sea
-0.1585

(0.0000)

-0.1319

(0.0000)

-0.2459

(0.0000)

-0.1469

(0.0000)

-0.2187

(0.0000)

-0.1929

(0.0000)

-0.1610

(0.0000)

-0.2777

(0.0000)

-0.1720

(0.0000)

-0.1394

(0.0000)

-0.2643

(0.0000)

-0.1687

(0.0000)

-0.1430

(0.0000)

-0.4199

(0.0000)

January
-0.1314

(0.0000)

-0.1316

(0.0000)

-0.1124

(0.0000)

-0.1402

(0.0000)

-0.0694

(0.0000)

-0.0676

(0.0000)

-0.1307

(0.0000)

-0.1319

(0.0000)

-0.1856

(0.0000)

-0.1866

(0.0000)

February
-0.1259

(0.0000)

-0.1277

(0.0000)

-0.1149

(0.0000)

-0.1302

(0.0000)

-0.0820

(0.0000)

-0.0860

(0.0000)

-0.1319

(0.0000)

-0.1352

(0.0000)

-0.1961

(0.0000)

-0.1979

(0.0000)

March
-0.1202

(0.0000)

-0.1200

(0.0000)

-0.1530

(0.0000)

-0.1187

(0.0000)

-0.1292

(0.0000)

-0.1309

(0.0000)

-0.1316

(0.0000)

-0.1311

(0.0000)

-0.1806

(0.0000)

-0.1792

(0.0000)

April
0.2963

(0.0000)

0.3004

(0.0000)

0.3354

(0.0000)

0.2897

(0.0000)

0.3014

(0.0000)

0.3074

(0.0000)

0.3052

(0.0000)

0.3118

(0.0000)

0.3641

(0.0000)

0.3691

(0.0000)

May
0.2786

(0.0000)

0.2791

(0.0000)

0.2225

(0.0000)

0.2893

(0.0000)

0.2804

(0.0000)

0.2822

(0.0000)

0.2855

(0.0000)

0.2868

(0.0000)

0.3515

(0.0000)

0.3539

(0.0000)

June
0.1301

(0.0000)

0.1293

(0.0000)

0.1211

(0.0000)

0.1453

(0.0000)

0.1546

(0.0000)

0.1519

(0.0000)

0.1313

(0.0000)

0.1293

(0.0000)

0.1791

(0.0000)

0.1746

(0.0000)

July
0.0256

(0.0000)

0.0263

(0.0000)

0.0115

(0.0000)

0.0111

(0.0000)

-0.0391

(0.0000)

-0.0388

(0.0000)

0.0295

(0.0000)

0.0275

(0.0000)

0.0372

(0.0000)

0.0354

(0.0000)

August
0.0016

(0.0000)

0.0014

(0.0000)

0.01323

(0.0000)

0.00254

(0.0000)

0.0190

(0.0000)

0.0187

(0.0000)

-0.0004

(0.0000)

-0.0018

(0.0000)

0.0006

(0.0000)

0.0001

(0.0000)

September
-0.0589

(0.0000)

-0.0580

(0.0000)

-0.0662

(0.0000)

-0.0896

(0.0000)

-0.0407

(0.0000)

-0.0388

(0.0000)

-0.0636

(0.0000)

-0.0624

(0.0000)

-0.0784

(0.0000)

-0.0765

(0.0000)

October
-0.0796

(0.0000)

-0.0803

(0.0000)

-0.0657

(0.0000)

-0.09877

(0.0000)

-0.1297

(0.0000)

-0.1332

(0.0000)

-0.0829

(0.0000)

-0.0843

(0.0000)

-0.1016

(0.0000)

-0.1016

(0.0000)

November
-0.1157

(0.0000)

-0.1177

(0.0000)

-0.1091

(0.0000)

-0.1675

(0.0000)

-0.1103

(0.0000)

-0.1106

(0.0000)

-0.1139

(0.0000)

-0.1146

(0.0000)

-0.1672

(0.0000)

-0.1658

(0.0000)

December
-0.1001

(0.0000)

-0.1000

(0.0000)

-0.1341

(0.0000)

-0.0908

(0.0000)

-0.1548

(0.0000)

-0.1543

(0.0000)

-0.1047

(0.0000)

-0.1045

(0.0000)

-0.1344

(0.0000)

-0.1238

(0.0000)

Number of export destination (ND)
-0.2390

(0.0000)

-0.1800

(0.0000)

-0.3055

(0.0000)

-0.4465

(0.0000)

-0.3560

(0.0000)

-0.2855

(0.0000)

-0.3315

(0.0000)

-0.2238

(0.0000)

-0.4854

(0.0000)

-0.4096

(0.0000)

-0.3187

(0.0000)

-0.5247

(0.0000)

-0.3652

(0.0000)

-0.2952

(0.0000)

-1.1601

(0.0000)

Number of import origins (NO)
-0.8198

(0.0000)

-0.7726

(0.0000)

-1.2243

(0.0000)

-0.9680

(0.0000)

-0.8261

(0.0000)

-1.0672

(0.0000)

-0.8946

(0.0000)

-0.8183

(0.0000)

-1.0788

(0.0000)

-0.8927

(0.0000)

-0.8075

(0.0000)

-1.3310

(0.0000)

-0.9045

(0.0000)

-0.8278

(0.0000)

-1.9191

(0.0000)

Number of exported products (NP)
0.0379

(0.5970)

-0.2005

(0.0393)

-0.2671

(0.0458)

-0.3269

(0.0066)

-0.2733

(0.0030)

-0.3246

(0.0438)

-0.0921

(0.4009)

-0.2508

(0.0033)

-0.4249

(0.0000)

-0.0668

(0.4806)

-0.2476

(0.0098)

-0.3121

(0.0072)

-0.1759

(0.4934)

-0.2649

(0.01099)

-0.3483

(0.01129)

Value Exported (log)
-0.5692

(0.0000)

-0.5133

(0.0000)

-0.9142

(0.0000)

-0.6218

(0.0000)

-0.5611

(0.0000)

-1.9233

(0.0000)

-0.7167

(0.0000)

-0.6382

(0.0000)

-1.0998

(0.0000)

-0.6545

(0.0000)

-0.5854

(0.0000)

-1.1236

(0.0000)

-0.7247

(0.0000)

-0.6451

(0.0000)

-1.8854

(0.0000)

Value Imported (log)
-1.3158

(0.0000)

-1.2947

(0.0000)

-2.1863

(0.0000)

-1.7081

(0.0000)

-1.5344

(0.0000)

-1.1924

(0.0000)

-1.7072

(0.0000)

-1.6628

(0.0000)

-2.7229

(0.0000)

-1.5690

(0.0000)

-1.4955

(0.0000)

-2.6176

(0.0000)

-1.5667

(0.0000)

-1.4588

(0.0000)

-3.1997

(0.0000)

Deviation from sectoral mean ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deviation from monthly mean ✓ ✓ ✓ ✓ ✓

Table 8: CLANs with 100 splits for S-Learner, T-Learner, R-Learner, DR-Learner, Generalized
Random Forest. We report the median of joint p-values.
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5 Concluding discussion

In this paper, we show the potential of ML techniques for building counterfactuals, identifying

the most affected subpopulations and the sources of treatment effect heterogeneity in scenarios

where a credible control group is unavailable and it is difficult to define ex-ante the intensity

of the shock for each unit.

In the application we consider, we concentrate on the effects of an economy-wide shock

such as COVID-19 on a firm’s export behaviour. Using data from the Colombian customs

office, we estimate that, during 2020, on average, the COVID-19 shock decreased a firm’s

probability of surviving in the export market by about 15 to 20 percentage points in April

and May and by approximately 5 to 8 percentage points in June and July. By analysing the

estimated treatment effect distribution, we reveal that these average results hide considerable

heterogeneity. For example, in April 2020, we find that for some exporters COVID-19

decreased their survival probability by 55 percentage points. We identify the firms most

and least affected by COVID-19 and we compare their characteristics by integrating the

Sorted Partial Effects methodology with our causal ML approach. We emphasize how the

integration into global value chains on the import side, both in terms of the number of

countries from which a firm sources and the value of imports, is an important factor of

resilience for exporters facing the COVID-19 shock.

From a methodological point of view, we show practitioners how to apply the generic

ML tools proposed by Chernozhukov et al. (2023) to a context in which there is no control

group available; we suggest how to use in-time placebo tests to check the credibility of

counterfactual estimates; finally, we provide evidence indicating that in the Sorted Partial

Effects analysis, in which the focus lies on the tails of the distribution of the treatment

effects, it is critical to correct the estimation error arising from the necessarily imperfect

reconstruction of the unobservable counterfactual.

While this method is specifically designed for analyzing the heterogeneous impacts of

economy-wide shocks, there exists potential utility in employing this approach in less extreme

situations where policies or shocks may exhibit unobservable spillovers that are challenging

to model in advance. In such contexts, our empirical framework proves advantageous in

detecting these potential heterogeneous indirect effects, as it circumvents the need for a

priori identification of a control group of untreated units.

Finally, in this paper we also demonstrate that ML methods can be applied successfully

to predict firms’ trade potential. We consider ML methods a promising tool to assist

firms and public agencies in their export decision-making processes. The bulk of countries

possesses export promotion agencies whose objective is to sustain firms’ internationalization

activities by lowering the costs of information acquisition (Broocks and Van Biesebroeck, 2017;

Munch and Schaur, 2018). Given that exporters’ dynamics can be understood as a complex

learning process dense of interdependencies (complementarity or substitutability) between

products and destination markets (from the perspective of technology/knowledge, local tastes,
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legal requirements, and marketing and distribution costs) and that ML techniques have

been successfully applied to predict firm performances in such settings, we believe that an

important avenue for future research is to test the effectiveness of using these techniques and

firm-level data to build recommendation systems. These systems could help firms identify

their latent comparative advantages and provide export diversification and differentiation

recommendations.
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Table 5: Estimated differences in means of the estimated treatment effect and other covariates
between the group of more affected and the group of less affected firms (CADiff) applying the
classification analysis to the Y − SUM estimates

Outcome variable β
(1)
1,f β

(2)
1,f β

(3)
1,f

TE -1.0910 -1.0930*** -1.0710
Agriculture -0.0616
Chemicals -0.0192
Manufacturing 0.0112
Metals 0.0109
Special 0.0059
Textile 0.0486
Wood 0.0041
Air 0.0411 0.0271 0.0289
Land 0.0086 0.0062 0.0068
Sea -0.0482 -0.0321 -0.0343
Jan -0.0190 -0.0189
Feb -0.0242 -0.0237
Mar -0.0181 -0.0181
Apr 0.0631 0.0630
May 0.0620 0.0612
Jun 0.0166 0.0167
Jul 0.0033 0.0028
Aug -0.0050 -0.0053
Sep -0.0169 -0.0167
Oct -0.0216 -0.0208
Nov -0.0218 -0.0222
Dec -0.0183 -0.0181
Number of export destinations (ND) 0.3310 0.3470 0.3306
Number of import origins (NO) 0.0350 -0.0595 -0.1077
Number of exported products (NP) 0.6050 0.4670 0.4275
Containment Index Stringency Export -0.2280 -0.0264 0.9690
Containment Index Stringency Import -4.2180 -4.4910 -0.0520
Value Exported (log) -0.2700 -0.2760 -0.1800
Value Imported (log) -0.0910 0.0296 0.0040
Deviation from sectoral mean ✓ ✓
Deviation from monthly mean ✓

Notes: column 1 does not include sector or month variables in
the regression; column 2 includes sector in the regression, and,
column 3 includes both the sector and month variables. ∗∗∗ means
significant at 1%, ∗∗ at 5%, ∗ at 10%. Standard errors are obtained
by bootstrapping the whole estimation process and joint p-values
are adjusted to take into account the simultaneous testing of all the
variables.
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A Appendix - The Colombian economy amidst the

COVID-19 crisis

Colombia exports little compared to other countries in Latin America with similar development

levels. In recent years, the share of total exports of Colombian GDP has oscillated around 15%, well

below other countries in the region such as Chile and Mexico (Cepeda-López et al., 2019). Colombia

started to open its economy in the 1990s with several market-oriented reforms to liberalize financial

and capital markets. Although the Colombian economy was still relatively closed during most

of the twentieth century (Ocampo and Tovar, 2000), it has been strongly affected by the global

financial crisis in 2008-2009 (Zuluaga et al., 2009). Nowadays, despite the growing number of trade

agreements, partners, and volume of trade, the integration of Colombia into world trade markets is

still modest.

The main reason behind Colombia’s poor performance is the low diversification of trade, with

a prevalence of primary products, because of the relative abundance of natural resources and

low-skilled labor. Besides, the emergence of raw products derived from mining has gained a larger

share in total exports, reducing the importance of other products such as coffee, bananas, flowers,

some labor-intensive manufactures, and petrochemicals (Garavito et al., 2020).

Since the outbreak of the COVID-19 pandemic, Colombia implemented early measures to

contain the spread of COVID-19 and prepare the health system and mitigate the economic and

social impact. The Colombian government issued non-compulsory requests for remote working to

private companies on February 24, 2020; schools and universities were closed on March 16. On

March 25, when there were fewer than a dozen deaths, the government implemented a complete

and mandatory lockdown until April 13. During this period, only a few essential activities – such

as health services, public services, communications, banking and financial services, food production,

pharmaceuticals, and cleaning and disinfection products – were excluded. The partial lockdown

implementation–between April 27 and May 11–allowed a gradual restoration of mobility, enabling a

set of non-essential activities under security guidelines and protocols to guarantee social distancing.

Most manufacturing activities were gradually allowed at this stage, while non-authorized activities

were restricted to sell their products through electronic commerce platforms. Finally, from May 28,

restrictions to the services sector have been lifted, and on September 1, the government announced

the confinement end, and airports were opened.

To better cope with the emergency, Colombian authorities have introduced transitory provisions

to secure international trade of essential products. Along with the lockdown measures, medicines,

supplies, and equipment in the health sector had zero tariffs for six months. Besides, the export

and re-export of these products were forbidden. There was a zero-tariff from April 7 to June 30 for

raw materials such as maize, sorghum, soybeans, and soybean cake.

During the second half of 2020, the Colombian government implemented several economic

recovery policies. These included unconditional cash transfers through programs such as Ingreso

Solidario, Familias en Acción, Jóvenes en Acción, and the Dı́a sin IVA (VAT-free day), alongside

support from Family Compensation Funds (Cajas de Compensación), benefiting millions of

households living in poverty or vulnerable conditions.
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In terms of sectoral and business support, various credit lines and incentives were introduced.

For example, financial assistance was provided to the country’s main commercial airline through

the Fondo de Mitigación de Emergencias (FOME), in order to preserve air connectivity. The

government also launched credit lines through local development banks, most notably Bancóldex,

such as Colombia Responde, initially targeted at the tourism, aviation, and entertainment sectors.

These lines were later extended to other industries, offering reduced interest rates and guarantees,

particularly for micro and small enterprises. Additional instruments such as React́ıvate were

introduced to help SMEs across all sectors finance the implementation of biosecurity protocols.

A significant share of the incentives focused on so-called “strategic sectors” such as mining,

infrastructure, and construction, with fiscal benefits and targeted subsidies aimed at stimulating

investment and employment. However, our analysis does not aim to assess the effectiveness of these

recovery measures. Indeed, many of them were not specifically targeted at exporting companies.

Therefore, we do not create a counterfactual scenario depicting outcomes without such recovery

policies, which can be explored in future research.
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B Appendix - Data

Table Appx.1: Predictors for exporters’ success

Variable Description Source

Models: SUM and SAM

NP,ND,NO Number of products exported by, number of destinations where a company exports, and number of

import origin countries for an exporter in a given month, respectively.

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

HHp, HHd Product-Herfindahl Index, and Destination-Herfindahl Index. Measure the concentration of products

at 6-digit HS, and the concentration at destination by company-month, respectively.

Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

Total value

(exports)

Free on board value of the export transaction in US dollars for each company-month. Colombian Customs Office

(DIAN)

Total value

(imports)

Free on board value of the import transaction in US dollars for each company-month. Colombian Customs Office

(DIAN)

Size 4 class dummies classifying firms according to the quartiles of the firm-level (Q1, Q2, Q3 and Q4)

distribution of the total monthly value of exports (in ln).

Authors’ own elaboration

Destination Factor variable with one level (dummy variable) for each destination country where Colombian

exporters operate by month.

Colombian Customs Office

(DIAN)

Origin Factor variable with one level (dummy variable) for each import origin country, where Colombian

exporters operate by month.

Colombian Customs Office

(DIAN)

Continent Factor variable with one level (dummy variable) for each continent where Colombian exporters

operate.

Authors’ own elaboration

Department Factor variable with one level (dummy variable) for each department (region) in Colombia from

which companies operate.

Colombian Customs Office

(DIAN)

Means of

Transportation

4 class dummies indicating the means of transportation a company uses to perform a transaction

(land, sea, air, others).

Colombian Customs Office

(DIAN)

Sector 99 class dummies for the classification of company products by 2-digit HS code (corresponding to

HS-chapters).

Authors’ own elaboration

Industry 22 class dummies indicating the industries (HS-sections) where companies operate. Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

Sector

Experience

Factor variable with one level (dummy variable) for each sector. Takes value 1 in all periods after

a company exports for the first time in a given sector (reflecting past experience in a sector).

Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

Destination

Experience

Factor variable with one level (dummy variable) for each destination. Takes value 1 in all periods

after a company exports for the first time in a given destination (reflecting past experience in a

destination).

Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

Exporter

(importer)

Experience

Variable counting the accumulated value exported (imported) in the last twelve months. Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

Models: SAM (COVID-19 variables)

Containment

Economic

Index

We consider the Economic Index from Hale et al. (2020) that provides a measure of the strength

of the economic policies set in place to deal with the pandemic (such as income support and

debt relief) for each country in the world. It ranges from 0 to 100. At the firm level we define

two variables, one at the export and one at the import side, by taking a weighted average of

these country level scores according to the monthly value of exports(imports) that a company

ships(source) in every country.1

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Containment

Government

Index

We consider the Government Index from Hale et al. (2020) that measures the strictness of ’lockdown’

style policies that primarily restrict people’s behavior. It ranges from 0 to 100. At the firm level

we define two variables, one at the export and one at the import side, by taking a weighted average

of these country level scores according to the monthly value of exports(imports) that a company

ships(source) in every country.

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Containment

Health Index

We consider the Health Index from Hale et al. (2020) that combines ’lockdown’ restrictions

and closures with measures such as testing policy and contact tracing, short-term investment in

healthcare, as well as investments in vaccine. Ranges from 0 to 100. At the firm level, we define

two variables, one at the export and one at the import side, by taking a weighted average of these

country-level scores according to the monthly value of exports(imports) that a company ships

(source) in every country.

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Containment

Stringency

Index

We consider the Stringency Index from Hale et al. (2020) that records how the response of

governments has varied over all indicators, becoming stronger or weaker over the course of the

outbreak. Ranges from 0 to 100. At the firm level we define two variables, one at the export and

one at the import side, by taking a weighted average of these country level scores according to the

monthly value of exports(imports) that a company ships(source) in every country.

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Models: SUM and SAM (variables only for Logit, Logit-LASSO, Logit-Ridge and SVM)

Size*Industry Factor variables with 5 levels for each industry. It takes the value 1 if the firm size is Q1, the

value 2 if the firm size is Q2, the value 3 if the size is Q3 and the value 4 if the size is Q4 while

operating in a particular industry. However, it takes the value 0 if a company is not active in this

industry (regardless of size).

Authors’ own elaboration

based on the Colombian

Customs Office (DIAN).

Size*Sector Factor variables with 5 levels for each sector. It takes the value 1 if the firm size is Q1, the value 2

if the firm size is Q2, the value 3 if the size is Q3 and the value 4 if the size is Q4 while operating in

a specific sector. However, it takes the value 0 if a company is not active in this sector (regardless

of size).

Authors’ own elaboration

based on the Colombian

Customs Office (DIAN).

Size*Means

of

Transportation

Factor variables with 5 levels for each sector. It takes the value 1 when the company size is Q1,

value 2 when the company size is Q2, value 3 when the size is Q3, and value 4 when the size is Q4

while operating using a given means of transportation. However, it takes value 0 if a company is

not operating using this means of transportation (for any size level).

Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

Size*Destination Factor variables with 5 levels for each sector. It takes the value 1 when the company size is Q1,

value 2 when the company size is Q2, value 3 when the size is Q3, and value 4 when the size is Q4

while operating in a given destination. However, it takes value 0 if a company is not operating in

this destination (for any size level).

Authors’ own elaboration

from the Colombian

Customs Office (DIAN).

* https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data

1 When an exporter does not import, we impute the corresponding internal Index (Economic, Government, Health, and Stringency) of Colombia to

create the corresponding import side Index.
2 Only the variables and interactions listed in this table were used in the analysis (no second or higher degree polynomial function). Interactions were

removed in tree-based models (XGBoost and Random Forest).

54

https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data


Table Appx.2: Sector-Industry mapping

Section (Industry) Industry Name HS-Chapter (Sector)

1 Live Animals/ Animal Products 1-5
2 Vegetable Products 6-14
3 Animal or Vegetable Fats/Oils 15
4 Prepared Foodstuffs 16-24
5 Mineral Products 25-27
6 Products of Chemical Industries 28-38
7 Plastics, Rubber 39-40
8 Raw Hides, Skins and Leather 41-43
9 Wood 44-46
10 Paper 47-49
11 Textile 50-63
12 Footwear 64-67
13 Art. of Stone, Cement 68-70
14 Jewelries 71
15 Base Metals 72-83
16 Machinery Equipment 84-85
17 Vehicles 86-89
18 Precision Instruments 90-92
19 Arms 93
20 Miscellaneous Manufactured Articles 94-96
21 Works of Art 97
22 Special Classification Provisions 98-99

Source: Author’s elaboration using Pierce and Schott (2012) tables.
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C Appendix - Descriptive Statistics

The left panel in Figure Appx.1 shows the evolution of total monthly exports during 2019 and

2020. The total monthly value of exports in 2020 is significantly lower than the one observed

for the corresponding month in 2019, except for January and February. The lockdown measures

implemented to contain the COVID-19 outbreak in Colombia and abroad had a severe impact

between April and June–the value in April 2020 is half of the one observed in April 2019 (47%).
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Figure Appx.1: The evolution of total exports (left) and the proportion of surviving exporting
firms in year t among those exporting in year t− 1 within size classes defined at t− 1 (right). Firm
size classes are based on the quartiles of the firms’ exports (in ln) distribution in a given month.

In a typical month, large firms get a lion’s share of the total exports. A regular pattern in

looking at customs data is that more prominent exporters trade for many months and ship more

frequently than smaller firms, which make only a few shipments. The right panel in Figure Appx.1

shows the proportion of surviving exporting firms in year t among those exporting in year t− 1,

by size classes defined at t − 1. Comparing the figures for 2020 with those for 2019, it seems

that the COVID-19 outbreak affected all firms regardless of their size. However, the effect looks

proportionally stronger for small firms (Q1 and Q2 of the distribution). In contrast, larger firms

are less affected and recover faster than the survival rates observed in 2019.

In the following of this Appendix C, we show the growth patterns of the number of exporters and

export volumes between 2019 and 2020 (and, as a comparison, between 2018 and 2019) segmented

by country of destination and product sector, offering further insights into the heterogeneous

impacts of the COVID-19 pandemic on Colombian exports.

Figure Appx.2 shows, separately for the first and second quarter of a year, the percentage of

firms that survive, enter or exit the export market and their corresponding shares of total exports.

Thus, for a given quarter in 2019 and the corresponding quarter in 2020, we label each firm as

exiting when it is present in 2019 and absent in 2020, entrant when it is absent in 2019 and present

in 2020, and surviving when it is present in both years. We average the total value exported by

each firm during the same quarter of two different years. Then, we sum the individual average

value exported according to the firms’ status. It turns out that surviving firms play an essential

role in explaining total exports: they are around half of the total number of firms in both quarters

and account for about 90% of the total export value. The volume lost, during the second quarter
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of 2020, due to exiting firms is around 5% (assuming they would have exported in 2020 similar

export volumes as observed in 2019). Entrant firms almost made up this 5% loss. Despite this, the

firms’ composition that participates in exports is very different. The number of existing firms in

the second quarter of 2020 is much higher than the share of the first quarter of 2020 and the share

of 2019 in the same period of the year.
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Figure Appx.2: Entry-exit dynamics of firms and total export value by firms that drop, enter or
stay active, in 2019 (upper part of the figure) and in 2020 (bottom part of the figure) by quarters.
Firm status is defined by looking at the previous year.

Figures Appx.3 and Appx.4 show the growth of the total number of exporters and the growth

of the total volume of exports between 2019 and 2020, by country of destination and product sector.

We consider the first and the second quarter separately, and we select destinations and product

sectors that account for 80% of the total exporters in 2019. In both figures, the product sectors

and the destinations are arranged by importance from top to bottom.

Figure Appx.3 shows that, compared to the first quarter of 2020, the second quarter of the year

is characterized by a severe and pervasive drop in the number of exporting firms and the volume of

exports in almost all the destinations reported. Figure Appx.5 shows that the same drop is not

observed during the second quarter of 2019. During the third and fourth quarters of 2020, the

value exported experienced more volatility than the number of firms. Nevertheless, the latter did

not recover to the growth rates of the first quarter of the year.

Exports by product sectors in the second quarter of 2020 (see Figure Appx.4) reveal a generalized

decrease in the number of exporting firms and trade values, while the first quarter exhibits very

heterogeneous patterns. The sectors that appear to be more severely affected in the second quarter

are Footwear (HS64), Leather Articles (HS42), Furniture (HS94), Books (HS49), Articles of Metal

(HS83), Knitted and Not-Knitted Accessories (HS61-62), Vehicles (HS87) and Articles of Iron or

Steel (HS73). Interestingly, these sectors are relatively more labor-intensive in Colombia, and

therefore they could be susceptible to disruptions connected to social distancing. Finally, only for

Coffee and Tea (HS08), Other textiles (HS63), and Jewelries (HS71) exports in value significantly

grew in the second quarter. Instead, in terms of the number of exporting firms, no product sectors

exhibit notable positive dynamics. During the third and fourth quarters of 2020, there is a rapid
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Figure Appx.3: The growth of the total number of exporters and the total value of exports by the
destination country for the four quarters of 2020. Orange bars represent negative growth and blue
bars positive growth. Destination countries are sorted from top to bottom accordingly to their
importance in the share of the number of exporters in 2019.

back to normality in both the growth of value exported and in the number of exporters’ growth

rate by sector. Figure Appx.6 shows the same figures for 2019, suggesting that in periods without

relevant shocks – such as the ones of the first quarter of 2020 – the changes in exports are also very

heterogeneous, but there are not such extreme changes.
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Figure Appx.4: The growth of the total number of exporters and the total value of exports by
sector for the four quarters of 2020. Orange bars represent export reductions and blue bars positive
export growth. Product sectors are sorted from top to bottom according to their importance in the
share of the number of exporters in 2019. Product sectors correspond to the chapters of the HS
code in parenthesis and the full name of the chapters is shortened to improve readability.
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Figure Appx.5: The growth of the total number of exporters and the total value of exports by
destination country for the first and the second quarters of 2019. Orange bars represent negative
growth and blue bars positive growth. Destination countries are sorted from top to bottom
accordingly with their importance in the share of number of exporters in 2019.
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Figure Appx.6: The growth of the total number of exporters and the total value of exports by sector
for the first and the second quarters of 2019. Orange bars represent export reductions and blue
bars positive export growth. Product sectors are sorted from top to bottom accordingly with their
importance in the share of number of exporters in 2019. Product sectors correspond to the chapters
of the HS-code in parenthesis, the full name of the chapters is shortened to improve readability.
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D Appendix: On the of convergence the T-Learner in

our scenario

The estimator α̂i = f̂1(Xi,ts−1)− f̂0(Xi,ts−1) is a T-learner estimator (Künzel et al., 2019), where

the two potential outcome functions are estimated separately. While the T-learner lacks Neyman

orthogonality, it has been heuristically observed in the literature that when the two potential

outcome functions are estimated at heterogeneous rates, the overall estimation error of the T-learner

is often practically dominated by the slower component (Künzel et al., 2019; Wager and Athey,

2018; Curth and Van der Schaar, 2021). In particular, Curth and Van der Schaar (2021) formally

derive that the mean squared error (MSE) of the T-learner estimator is asymptotically bounded by

the sum of the squared errors of the two nuisance regressions, implying that the overall convergence

rate is determined by the slower component when the nuisance estimators converge at heterogeneous

rates.

In the following we want to show that the only threaten to identification is the SUM.

It is easy to see that ˆ̂α identifies the CATE if E[E0
ts(Xts−1)] = 0 from Eq. 7.

In order to analyze the same for α̂ we need to take an additional step and examine the differences

between SUM and SAM through the lens of empirical process theory, as discussed in Tsybakov and

Tsybakov (2009). Indeed, from Eq. 12, we observe that the main threat to identification arises

from the difference in prediction errors between SUM and SAM when considering the estimator α̂.

The objective is to determine whether the convergence rates to the true functions f0 differ between

SUM and SAM, and if so, to identify which of the two converges more slowly, thereby posing a

greater threat to identification.

In the following discussion, (X1,t−1;Y1,t), . . . , (Xi,t−1;Yi,t), . . . (XN,t−1;YN,t)) are assumed to be

i.i.d. 33. In what follows we will assume that temporal dependence does not induce cross-sectional

dependence in a ”pooled cross-sectional” sense for providing the intuition 34. Furthermore, we

will focus on estimation tasks for penalized regressions. We assume a moderate sparsity s in

33Notice that the analysis can be easily extended to the case of independent but not identically distributed
random variables following Singh (1975)

34The results can be extended to the panel case (Dehling and Philipp, 2002; Mirzaei, Kostic, Maurer,
et al., Mirzaei et al.; Okui and Yanagi, 2019). Specifically, since our estimation procedures for SUM and
SAM rely on different time periods, we should account for the fact that (Xt, Yt) follows a weakly dependent
stochastic process satisfying a strong mixing condition. Namely, the cross-sectional independence assumption
should be enriched by an α-mixing condition of the form:

αk = sup
A∈Ft,B∈Ft−k

|P (A | B)− P (A)| → 0 as k → ∞. (18)

where Ft is the sigma-algebra generated by (Xt, Yt). P (A) represents the probability that a firm’s
characteristics and outcome at time t, denoted as (Xi,t, Yi,t), fall into a given set (S, T ) without conditioning
on past values. P (A | B) represents the probability that (Xi,t, Yi,t) falls into (S, T ), given that in an earlier
period, the firm’s characteristics and outcome were in a different set (S′, T ′), i.e., (Xi,t−k, Yi,t−k) ∈ (S′, T ′).
This ensures that temporal dependence decays over time as k –the lag– grows, allowing empirical process
results to hold even when observations are not strictly i.i.d. (Drees and Rootzén, 2010). Moreover, it is
possible to show that a form of the Glivenko-Cantelli theorem is valid also for panel data (Okui and Yanagi,
2019). The major results of empirical process theory are reproduced if, additionally to the above, we assume
that (Xt, Yt) follow a weakly stationary process and that the estimation bias in time-dependent quantities
does not dominate asymptotic results.
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order to extend our results to LASSO, Ridge and ElasticNet types of models. In particular

||f0(·)||n, ||f1(·)||n ≥ n−1/w for 0 < w < 2. The reader is referred to Koltchinskii (2011) for further

details. Finally, notice that an advantage of the following study is that it adapts to nonparametric

models.

Given the mentioned assumptions and for the sake of clarity in the notation, we will refer to

(Xi,t−1, Yi,t) as simply (Xi, Yi) so that we can rewrite the potential outcomes as Y d
i = fd(Xi). In

what follows, we will assume that the variables at our disposal are sub-gaussian 35. We now define

the classes associated with SAM and SUM as

FSAM = {f : X → [0, 1] predicting Y 1 from observed (Xi, Y
1
i )}

FSUM = {f : X → [0, 1] predicting Y 0 from Xi only (no observed labels)}

We briefly investigate the complexity of the latter classes in what follows. As aforementioned, given

Assumption 2, it is possible in our context to use f̂0
2019 on X2020 to estimate Y 0

2020, whose labels

are, however, unknown. Hence, although the estimation of f̂0
2019 is achieved through supervised

learning, the validity of Ŷ 0
2020 is guaranteed only if Assumption 2 holds. This is because the latter

task is inherently unsupervised, as the labels of Ŷ 0
2020 remain unobserved. In other words, while the

SAM is directly supervised by the observed data (Xi, Y
1
i ), its function class FSAM is constrained to

fit the empirical distribution of observed outcomes, the SUM must approximate counterfactuals

without direct labels, meaning that its function space FSUM must be broader to accommodate

all possible mappings from X to Y 0. More formally, if the function classes are parameterized by

some hypothesis space Θ, the cardinality of F can be linked to the dimension of Θ. Suppose:

FSAM is parameterized by ΘSAM. and FSUM is parameterized by ΘSUM. Since the SUM does not

observe Y 0 directly, its parameter space must include extra degrees of freedom to account for

unobserved variability. This means:

dim(ΘSUM) > dim(ΘSAM).

The latter is strictly related to the concept of complexity of FSUM and FSAM.

The complexity of a function class is quantified by its metric entropy, given by logN(ε,F , L1(Q)),

where N(ε,F , L1(Q)) is the covering number, i.e., the minimal number of functions required

to approximate all f ∈ F within an error ε. Since SUM must account for a broader range

of possible counterfactual relationships, its function space is necessarily larger, implying that

N(ε,FSUM, L1(Q)) > N(ε,FSAM, L1(Q)), and taking the logarithm yields

logN(ε,FSUM, L1(Q)) > logN(ε,FSAM, L1(Q))

Since we assumed moderate sparsity, we can be confident that the function classes of both SUM

and SAM are not excessively complex, ensuring that theoretical bounds can still be established.

35The latter assumption is not too much restrictive as it includes all normal random variables, all bounded

random variables and all random variables for which even moments exist and satisfy E[X2k] ≤ (2k)!
2kk!

ξ2k for
k = 1, 2, 3, . . . and some parameter ξ ≥ 0.
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In the analysis of empirical risk minimization under complexity constraints, the convergence rate

of the estimator f̂ to the true function f0 is governed by the metric entropy of the function class

F . Given the metric entropy bound logN(δ,F , ∥ · ∥) ≤ Cδ−w, for C > 0, classical results from

empirical process theory (see Sadhanala and Tibshirani (2019)) establish that the expected rate of

convergence satisfies:

∥f̂ − f0∥2n = O(n−2/(2+w)).

Applying this result to the function classes of SUM and SAM, we recover their respective

entropies as satisfying:

logN(δ,FSUM, ∥ · ∥) ≥ CSUMδ−wSUM , logN(δ,FSAM, ∥ · ∥) ≤ CSAMδ−wSAM .

Since SUM estimates counterfactuals without direct supervision, it must approximate a wider

range of functional relationships, leading to a function class FSUM with a larger covering number and

a lower complexity exponent wSUM < wSAM. Consequently, the corresponding rates of convergence

are:

∥f̂SUM − f0∥2n = O(n−2/(2+wSUM)), ∥f̂SAM − f0∥2n = O(n−2/(2+wSAM)). (19)

Since wSUM < wSAM, it follows that:

n−2/(2+wSUM) ≫ n−2/(2+wSAM),

which formally confirms that the convergence rate of SUM is slower than that of SAM. We can

summarize all of this in a Lemma.

Lemma 1 (Identification Threat from the SUM under regularized ML). Consider the set up of

Section 2. Let f̂SAM and f̂SUM denote the estimators obtained via penalized regression (e.g., LASSO,

Ridge) with moderate sparsity s, where inputs are i.i.d. sub-Gaussian. Let FSAM and FSUM be the

corresponding function classes, with metric entropies satisfying:

logN(δ,FSUM, ∥ · ∥) ≥ CSUMδ−wSUM ,

logN(δ,FSAM, ∥ · ∥) ≤ CSAMδ−wSAM , for 0 < wSUM < wSAM < 2.

Then the mean squared convergence rates of the two estimators are given by:

∥f̂SUM − f0∥2n = O(n−2/(2+wSUM)), ∥f̂SAM − f1∥2n = O(n−2/(2+wSAM)).

Consequently, the SUM estimator converges more slowly than the SAM estimator with

n−2/(2+wSUM) ≫ n−2/(2+wSAM),

Proof Let F be a function class such that logN(δ,F , ∥ · ∥n) ≤ Cδ−w for some C > 0 and

w ∈ (0, 2). Then standard empirical process theory (see Koltchinskii (2011)) yields the convergence
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rate:

∥f̂ − f0∥2n = O(n−2/(2+w)).

Applying this to SAM and SUM yields:

∥f̂SAM − f1∥2n = O(n−2/(2+wSAM)), ∥f̂SUM − f0∥2n = O(n−2/(2+wSUM)).

Since wSUM < wSAM, we have:
2

2 + wSUM
>

2

2 + wSAM
,

so the exponent in the rate for SUM is smaller, and the convergence rate is slower. Hence,

∥f̂SUM − f0∥2n ≫ ∥f̂SAM − f1∥2n.■

E Appendix: Robustness checks with panel cross validation

and alternative ML methods

In this appendix, we report the results of a series of robustness checks that pursue a threefold goal:

(1) the robustness of our scenario in the case of a longer panel before the shock; (ii) the robustness

of our scenario when more machine learning algorithms than those given in the main text are used;

(iii) the robustness of our scenario when different performance metrics are used in the validation

step.

We start by combining the datasets that contain the relevant information on Colombian companies

from 2014 to 201836. Since we are dealing with a panel, the validation process is more complicated

than the strategy chosen in the main text. We consider two possible strategies for splitting the

panel:

1. The first possibility (panel-split 1 ) is to repeat the same approach as for Fabra et al. (2022).

Namely, take the features xt+k to predict yt+k in the training, where k = 1, 2, . . . ,K is rolling

and K is the size of the training. Then use xK+1 as validation to predict yK+1 using the

trained function.

To clearly distinguish between the structure of the dataset and the actual time of the modeled

behavior, we introduce the following notation. Let s denote the observation year, i.e. the

year in which observations are recorded in the dataset. Let t = s+1 denote the effective year,

which represents the time period to which the outcome variable Yt refers. In our data set, the

outcome Yt, which was recorded in the year s, reflects the firm’s export behavior in the year

t. Instead, t = s applies to the characteristics. This means that we observe tuples (Xt=s, Yt),

36To prepare the data set for the training and validation of the model, the data is first split into predictor
features and target variables for the training and validation set. Irrelevant columns, such as identifiers and
date-related fields, are removed from the predictors, while the target variable remains unchanged. Categorical
features are converted to numeric form using binary indicator variables and any missing values in the data
are filled in to ensure consistency. The numeric characteristics (except for the binary indicators) are then
transformed to obtain a consistent scale for all variables, usually by adjusting for a common central tendency
and dispersion. This standardization step ensures that all continuous features contribute equally during
model training.
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where Yt encodes the behavior in the year s+ 1. For the sake of simplicity, we consider a

generic prediction task with a fixed target year t (e.g. 2016) and a fixed calendar month (e.g.

January). In this context, the training data is constructed from firms observed in the two

previous years s− 2 and s− 1, i.e. we use observations where the features Xs−2, Xs−1 and

outcomes Ys−1, Ys. Since the export behavior in s is encoded in Yt−1, recorded in s− 1 and

accordingly linked to firm characteristics from the year s− 1, our data would in principle

allow us to learn a mapping from Xs to Yt. However, the model of Fabra et al. (2022) –

requires learning a mapping from Xs to Ys in both training and validation. To this end,

we have replaced the target Yt with the export behavior from the same year in which the

input features are recorded, i.e. Ys. In practice, this means that the monthly values of Yt are

overwritten with those of Ys := Yt−1, forcing a common future behavior in the training data.

This trains the model to predict an imputed target — it learns the mapping Xs → Ỹt, where

the tilde means that Yt has been replaced by Ys. The validation features correspond to Xt

for a fixed calendar month (e.g. January). The corresponding validation targets are Yt
37

To summarize, the model is trained on Xs → Ỹt and evaluated on Xt → Yt
38.

The procedure described above can be recursively generalized 39.

2. The second strategy (panel-split 2 ) stays with the current version of the dataset, without

distinguishing between the observation year and the effective year, as in panel-split 1, noting

that (1) the trained model should predict the export results for the following year and (2)

the implementation is slightly different from that of Fabra et al. (2022). To be consistent

with Fabra et al. (2022), our training procedure rolls forward in time due to the way Y was

recorded in our dataset, but the variable used as Ytrain corresponds to what Fabra et al.

(2022) labeled as Yvalidation.

This strategy can be further subdivided into alternative data splitting schemes that fall into

two broad categories: those that exploit the temporal dimension of the dataset and those that

exploit the structure of the panel (i.e., both the cross-sectional and temporal dimensions).

Since the former approach is more commonly used in our reference literature (Cerqua and

Letta, 2020; Fabra et al., 2022), we follow this approach in our analysis. Accordingly, we

describe the latter here only briefly so as not to overburden the reader. Nevertheless, we

emphasize that a more comprehensive approach to training and cross-validation in panel

data should ideally also make use of the cross-sectional dimension. We leave this extension

to future research and refer the reader to the online appendix for a possible direction in this

regard.

37In order to create a consistent validation set, the inputs Xt recorded in s = t and the targets Yt recorded
in s− 1 are merged using an inner join on firm identifier and the calendar month.

38As an illustration, consider the case where the target year is t = 2016, which corresponds to an
observation year s = 2015, with data recorded in a fixed month (e.g. January). The training data is drawn
from the two previous years s = 2014 and s = 2015 using inputs Xs and targets Yt. Following Fabra et al.
(2022), the target Yt is replaced by Ys, i.e. by the export behavior from the same year as the input features.

Specifically, Y2016 is overwritten with monthly values from Y2015, which leads to an imputed target Ỹ2016.
The model is thus trained on X2015 → Ỹ2016 and then applied to predict Y2017 from X2016.

39For example, for 2017, we keep 2015 and 2016 in the training set, impute the corresponding values of
the export (i.e. Y of 2014 to 2015, Y of 2015 to 2016) and use X2017 to predict Y2017 (i.e. Y corresponding
to 2016).
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The first strategy, which utilizes the temporal dimension, slightly modifies the Fabra et al.

(2022) procedure by performing a grid search approach. We call this strategy panel-split 2 (i).

The idea is to choose ex-ante a set of, say KML, possible combinations of hyperparameters

for the different ML algorithms (the subscript indicates that the number of hyperparameter

combinations depends on the ML algorithm). The process consists of training each of the

KML models in turn, following a ”year-forward chaining” approach. Let {t0, t1, . . . , tT }
represent the available years in the dataset, where t0 := t− L is the start year and T is the

end year. At each step s, the training set includes all years {t0, t1, . . . , ts−1} to predict the

target variable in year ts, and the validation set consists of ts to predict ts+1. For example, in

the first iteration, the model is trained with the input features Xt0 and the target variable yt1

and then validated with the features Xt1 to predict yt2 . The hyperparameters are selected by

minimizing the RMSE of the validation predictions. In the following iterations, the training

set is expanded step by step: in iteration s the model is trained on {Xt0 ,Xt1 , . . . ,Xti−1} to

predict {yt1 ,yt2 , . . . ,yts} and validated using Xts to predict yts+1 . This chaining process is

continued until the last year tT , recording the RMSEs (AUCs and BACCs) for each validation

step. The hyperparameters that result in the lowest overall RMSE across all validation sets

are selected as optimal.

Algorithm 1 shows an example with two machine learning models, LASSO and Ridge

regression, using a ”year-forward chaining” approach, where each model is evaluated for four

different regularization strengths (λ ∈ {λ1, λ2, λ3, λ4}). Assume that the data set spans three

years (2014, 2015, 2016) and predictions are made for the target variable of the following

year.
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Algorithm 1 Year-Forward Chaining for Hyperparameter Selection

Require: Dataset {(Xt,yt+1)}tTt=t0
;

ML models M = {LASSO,Ridge};
Hyperparameters Λ = {λ1, λ2, λ3, λ4}

1: for each model m ∈ M do

2: for each λ ∈ Λ do

3: for iteration i = 1 to T − 1 do

4: Define training years: {t0, t1, . . . , ti−1}
5: Define validation year: ti

6: Train: Fit model m with λ on

{
(Xt0 ,yt1), . . . , (Xti−1 ,yti)

}

7: Validate: Predict ŷti+1 using Xti (if yti+1 is available)

8: Evaluate: Compute RMSE, AUC, BACC between ŷti+1 and yti+1

9: Store performance metrics

10: end for

11: end for

12: end for

13: for each model m ∈ M do

14: Aggregate validation metrics across iterations for each λ ∈ Λ

15: Select λ∗
m = argminλRMSEcumulative

16: end for

17: return Optimal hyperparameters {λ∗
LASSO, λ

∗
Ridge}

In the first iteration, the models are trained using the data from 2014 (X2014 as input and

y2015 as target) and validated on 2015 (X2015) to predict y2016. For each combination of

model (LASSO or Ridge) and λ, the predictions are evaluated using the RMSE, AUC and

BACC and the results are recorded. Then the training set is extended by 2014 and 2015

(X2014,X2015 as input and y2015,y2016 as target), while 2016 (X2016) is used for validation to

predict y2017. Again, the RMSE (AUC and BACC) is calculated for each model and each

combination of λ and the results are recorded. At the end of these iterations, the RMSE

(AUC, BACC) values from all validation steps are aggregated for each model and each λ

value. The best hyperparameters for LASSO and Ridge are determined by selecting the λ

values that minimize the cumulative RMSE across all validation steps.

The procedure we used in our exercise is based on panel-split 2 (i) with the only difference that

the validation year is set to tT (in our case the dataset containing theX2017 and Y2018). We call

this strategy panel-split 2 (ii). In iteration s, the model is trained on {Xts , . . . ,XtT−2 ,XtT−1}
to predict {yt1 ,yt2 , . . . ,yts} and validated with Xts to predict yts+1 . This chaining process
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continues until the last year tT , recording the RMSEs for each validation step.

Once the optimal λs are calculated for each month and each training size via the procedure

described above, we then estimate the RMSEs for each training size including the dataset

containing X2017 and Y2018
40, in the training set with the selected λs (model estimation).

This makes it possible to learn the optimal coefficients of the model based on the validated

λs. We finally use the estimated model to test the predictions obtained for Y2019 using X2018

(and save the test errors) (Y-SUM placebo for 2019 ).

The use of panel-split 1 leads to unnecessary complexity, especially because the dependent

variable in our data set corresponds to the following year, which makes practical implementation

more difficult. In addition, the approach of Fabra et al. (2022) iteratively varies the validation year

across different splits. In our view, this strategy reduces the predictive power of the T-learner,

whose main goal is to accurately estimate the SUM for counterfactual inference. In contrast, setting

the validation set to Y2018 provides a more stable and targeted framework. Given the temporal

proximity between 2018 and 2019, using Y2018 for validation increases the likelihood that the

selected hyperparameters generalize well to Y2019, improving the estimation of the SUM function

relevant for the counterfactual prediction.

For these reasons, we have opted for a modified version of the strategy in Fabra et al. (2022), in

which the validation year remains fixed at Y2018. This consideration has led us to adopt panel-split

2 (ii), which addresses the limitations associated with panel-split 1. The reason why we used

panel-split 2 (ii) and not panel-split 2 (i) is explained in more detail in the online appendix. The

results using panel-split 1 are available on request.

Results for panel case with alternative ML techniques

In this section, we report on the results we obtain when we apply the panel-split 2 (ii) approach.

Table Appx.3 shows the hyperparameter grid used for each ML method.

40This effectively means that the training set was constructed as follows:

• Training size 1: the training data contained X2017 and Y2018;

• Training size 2: the training data contained X2016, X2017 and Y2017, Y2018;

• Training size 3: the training data contained X2015, X2016, X2017 and Y2016, Y2017, Y2018.

The training size 4 was not included coherently with the validation, whose maximum size is necessarily 3
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Model Hyperparameters

LASSO lambda: Values generated by combining:

- Coarse grid: log10-spaced values in range [10−4, 102] with 20 points,

- Fine grid: log10-spaced values in range [10−1, 101] with 50 points,

- Unique combination of both grids.

Ridge Same as LASSO (lambda values)

RandomForest n estimators : [25, 100, 200, 500],

max features : [’sqrt’, ’log2’, None],

max depth: [None, 3, 5, 7, 10],

max leaf nodes : [3, 6, 9],

min samples split : [2, 8]

XGBoost subsample: [0.4, 0.5, 0.7, 0.9],

learning rate: [0.05, 0.1, 0.3, 0.5, 0.9],

max depth: range(3, 8),

n estimators : [100, 200]

SVM C : log10-spaced values in range [10−2, 103],

kernel : [’linear’, ’rbf’],

gamma: log10-spaced values in range [10−3, 101]

Table Appx.3: Tuned hyperparameters for different machine learning models.

Results are presented for training sets created from one, two or three years prior to a fixed

validation year. For further methodological details, the reader is referred to the previous section. A

more detailed analysis of how the performance of the regularization methods changes with different

training set sizes can be found in the online appendix.

Regularization techniques: LASSO and Ridge The following figure displays the difference

Y-SUM with different training sizes using RMSE as validation criterion:
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Figure Appx.7: Y-SUM using Logit-LASSO-CV for different training sizes: top: training size 1,
mid: training size 2, bottom: training size 3
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It is worth noting that in the main text, using standard cross-sectional cross-validation, we observe a

very similar distribution of test errors for the period January to March 2020. This same distribution

is also obtained when applying the SAM during the same period, indicating that the issue of bias

in specific regions of the distribution of treatment effects has been effectively addressed.

SVM The same exercise has been repeated for SVM.

Figure Appx.8 summarizes the results for the placebo in 2019 when SVM is used.

Tree based methods (RF, XGB, BART) The first of tree based methods presented is

RF. The hyperparameters for RF are chosen according to Probst et al. (2019). Figure Appx.9

summarizes the results for the placebo in 2019 when RF is used:
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Figure Appx.8: Y-SUM using SVM for different training sizes for 2019 and 2020: top: training size
1, mid: training size 2, bottom: training size 3
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Figure Appx.9: Y-SUM using RF for different training sizes for 2019 and 2020. Top: training size
1, mid: training size 2, bottom: training size 3.

XGB results The following are the results for XGB:
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Figure Appx.10: Y-SUM using XGB for different training sizes for 2019 and 2020. Top: training
size 1, mid: training size 2, bottom: training size 3.

Remark Figures Appx.7-Appx.10 present the results for both the placebo case—where no

COVID-19 occurred—and for the year 2020. The estimator ˆ̂α was used because incorporating

additional lagged years can only improve the counterfactual prediction (i.e., the SUM) in our

context. Therefore, this is the only estimator tested. The results are consistent with the main

analysis and fall within the same range of values. No significant effects were detected in the placebo
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case. Furthermore, not only are the CATE estimates aligned with those reported in the main text,

but the predictive performance of the various machine learning estimators is also comparable. A

detail of the performance of the results of the various ML methods is Tables Appx.4 and Appx.5.
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Month Valid. SVM Test SVM Valid. RF Test RF Valid. XGB Test XGB Valid. LASSO Test LASSO Valid. Ridge Test Ridge Valid. Logit Test Logit

Jan

tr.size 1: 0.437

tr.size 2: 0.435

tr.size 3: 0.433

tr.size 1: 0.434

tr.size 2: 0.433

tr.size 3: 0.430

tr.size 1: 0.438

tr.size 2: 0.436

tr.size 3: 0.437

tr.size 1: 0.443

tr.size 2: 0.440

tr.size 3: 0.438

tr.size 1: 0.423

tr.size 2: 0.424

tr.size 3: 0.423

tr.size 1: 0.402

tr.size 2: 0.401

tr.size 3: 0.400

tr.size 1: 0.416

tr.size 2: 0.417

tr.size 3: 0.415

tr.size 1: 0.409

tr.size 2: 0.406

tr.size 3: 0.404

tr.size 1: 0.419

tr.size 2: 0.411

tr.size 3: 0.412

tr.size 1: 0.416

tr.size 2: 0.410

tr.size 3: 0.405

tr.size 1: 0.423

tr.size 2: 0.413

tr.size 3: 0.424

tr.size 1: 0.425

tr.size 2: 0.415

tr.size 3: 0.426

Feb

tr.size 1:0.453

tr.size 2: 0.448

tr.size 3: 0.423

tr.size 1: 0.443

tr.size 2: 0.445

tr.size 3: 0.425

tr.size 1: 0.431

tr.size 2: 0.429

tr.size 3: 0.428

tr.size 1: 0.437

tr.size 2: 0.434

tr.size 3: 0.434

tr.size 1: 0.414

tr.size 2: 0.410

tr.size 3: 0.410

tr.size 1: 0.408

tr.size 2: 0.406

tr.size 3: 0.403

tr.size 1: 0.418

tr.size 2: 0.415

tr.size 3: 0.410

tr.size 1: 0.411

tr.size 2: 0.405

tr.size 3: 0.406

tr.size 1: 0.413

tr.size 2: 0.403

tr.size 3: 0.405

tr.size 1: 0.415

tr.size 2: 0.405

tr.size 3: 0.409

tr.size 1: 0.421

tr.size 2: 0.416

tr.size 3: 0.417

tr.size 1: 0.424

tr.size 2: 0.420

tr.size 3: 0.419

Mar

tr.size 1:0.422

tr.size 2: 0.420

tr.size 3: 0.411

tr.size 1: 0.421

tr.size 2: 0.418

tr.size 3: 0.420

tr.size 1: 0.434

tr.size 2: 0.430

tr.size 3: 0.430

tr.size 1: 0.434

tr.size 2: 0.433

tr.size 3: 0.431

tr.size 1: 0.424

tr.size 2: 0.413

tr.size 3: 0.407

tr.size 1: 0.399

tr.size 2: 0.396

tr.size 3: 0.396

tr.size 1: 0.401

tr.size 2: 0.414

tr.size 3: 0.398

tr.size 1: 0.407

tr.size 2: 0.406

tr.size 3: 0.500

tr.size 1: 0.411

tr.size 2: 0.408

tr.size 3: 0.409

tr.size 1: 0.409

tr.size 2: 0.411

tr.size 3: 0.412

tr.size 1: 0.420

tr.size 2: 0.421

tr.size 3: 0.418

tr.size 1: 0.425

tr.size 2: 0.424

tr.size 3: 0.421

Apr

tr.size 1: 0.455

tr.size 2: 0.443

tr.size 3: 0.433

tr.size 1: 0.443

tr.size 2: 0.431

tr.size 3: 0.428

tr.size 1: 0.430

tr.size 2: 0.430

tr.size 3: 0..429

tr.size 1: 0.489

tr.size 2: 0.492

tr.size 3: 0.491

tr.size 1: 0.404

tr.size 2: 0.408

tr.size 3: 0.401

tr.size 1: 0.472

tr.size 2: 0.469

tr.size 3: 0.469

tr.size 1: 0.418

tr.size 2: 0.403

tr.size 3: 0.412

tr.size 1: 0.402

tr.size 2: 0.402

tr.size 3: 0.398

tr.size 1: 0.404

tr.size 2: 0.407

tr.size 3: 0.399

tr.size 1: 0.406

tr.size 2: 0.409

tr.size 3: 0.401

tr.size 1: 0.413

tr.size 2: 0.417

tr.size 3: 0.411

tr.size 1: 0.420

tr.size 2: 0.421

tr.size 3: 0.416

May

tr.size 1: 0.439

tr.size 2: 0.440

tr.size 3: 0.437

tr.size 1: 0.446

tr.size 2: 0.444

tr.size 3: 0.432

tr.size 1: 0.431

tr.size 2: 0.429

tr.size 3: 0.428

tr.size 1: 0.472

tr.size 2: 0.473

tr.size 3: 0.472

tr.size 1: 0.418

tr.size 2: 0.416

tr.size 3: 0.419

tr.size 1: 0.445

tr.size 2: 0.445

tr.size 3: 0.445

tr.size 1: 0.414

tr.size 2: 0.415

tr.size 3: 0.412

tr.size 1: 0.406

tr.size 2: 0.404

tr.size 3: 0.402

tr.size 1: 0.407

tr.size 2: 0.408

tr.size 3: 0.401

tr.size 1: 0.410

tr.size 2: 0.411

tr.size 3: 0.404

tr.size 1: 0.417

tr.size 2: 0.422

tr.size 3: 0.421

tr.size 1: 0.422

tr.size 2: 0.423

tr.size 3: 0.425

Jun

tr.size 1: 0.457

tr.size 2: 0.446

tr.size 3: 0.440

tr.size 1: 0.454

tr.size 2: 0.439

tr.size 3: 0.433

tr.size 1: 0.433

tr.size 2: 0.432

tr.size 3: 0.432

tr.size 1: 0.456

tr.size 2: 0.455

tr.size 3: 0.456

tr.size 1: 0.415

tr.size 2: 0.404

tr.size 3: 0.399

tr.size 1: 0.424

tr.size 2: 0.422

tr.size 3: 0.421

tr.size 1: 0.410

tr.size 2: 0.408

tr.size 3: 0.407

tr.size 1: 0.404

tr.size 2: 0.401

tr.size 3: 0.400

tr.size 1: 0.407

tr.size 2: 0.407

tr.size 3: 0.402

tr.size 1: 0.410

tr.size 2: 0.411

tr.size 3: 0.408

tr.size 1: 0.412

tr.size 2: 0.411

tr.size 3: 0.414

tr.size 1: 0.418

tr.size 2: 0.415

tr.size 3: 0.417

Jul

tr.size 1: 0.420

tr.size 2: 0.422

tr.size 3: 0.417

tr.size 1: 0.411

tr.size 2: 0.420

tr.size 3: 0.418

tr.size 1: 0.430

tr.size 2: 0.429

tr.size 3: 0.433

tr.size 1: 0.446

tr.size 2: 0.446

tr.size 3: 0.446

tr.size 1: 0.410

tr.size 2: 0.404

tr.size 3: 0.403

tr.size 1: 0.416

tr.size 2: 0.415

tr.size 3: 0.413

tr.size 1: 0.417

tr.size 2: 0.421

tr.size 3: 0.417

tr.size 1: 0.398

tr.size 2: 0.397

tr.size 3: 0.394

tr.size 1: 0.403

tr.size 2: 0.400

tr.size 3: 0.406

tr.size 1: 0.406

tr.size 2: 0.404

tr.size 3: 0.408

tr.size 1: 0.414

tr.size 2: 0.410

tr.size 3: 0.408

tr.size 1: 0.416

tr.size 2: 0.414

tr.size 3: 0.410

Aug

tr.size 1: 0.443

tr.size 2: 0.435

tr.size 3: 0.430

tr.size 1: 0.434

tr.size 2: 0.433

tr.size 3: 0.433

tr.size 1: 0.430

tr.size 2: 0.428

tr.size 3: 0.427

tr.size 1: 0.443

tr.size 2: 0.441

tr.size 3: 0.441

tr.size 1: 0.424

tr.size 2: 0.444

tr.size 3: 0.428

tr.size 1: 0.413

tr.size 2: 0.412

tr.size 3: 0.410

tr.size 1: 0.414

tr.size 2: 0.413

tr.size 3: 0.411

tr.size 1: 0.403

tr.size 2: 0.401

tr.size 3: 0.402

tr.size 1: 0.405

tr.size 2: 0.403

tr.size 3: 0.405

tr.size 1: 0.410

tr.size 2: 0.409

tr.size 3: 0.407

tr.size 1: 0.413

tr.size 2: 0.411

tr.size 3: 0.414

tr.size 1: 0.415

tr.size 2: 0.417

tr.size 3: 0.419

Sep

tr.size 1: 0.413

tr.size 2: 0.410

tr.size 3: 0.411

tr.size 1: 0.403

tr.size 2: 0.400

tr.size 3: 0.412

tr.size 1: 0.429

tr.size 2: 0.428

tr.size 3: 0.428

tr.size 1: 0.437

tr.size 2: 0.436

tr.size 3: 0.436

tr.size 1: 0.410

tr.size 2: 0.405

tr.size 3: 0.405

tr.size 1: 0.409

tr.size 2: 0.408

tr.size 3: 0.407

tr.size 1: 0.409

tr.size 2: 0.410

tr.size 3: 0.409

tr.size 1: 0.403

tr.size 2: 0.401

tr.size 3: 0.400

tr.size 1: 0.403

tr.size 2: 0.404

tr.size 3: 0.400

tr.size 1: 0.405

tr.size 2: 0.408

tr.size 3: 0.403

tr.size 1: 0.411

tr.size 2: 0.414

tr.size 3: 0.408

tr.size 1: 0.413

tr.size 2: 0.419

tr.size 3: 0.412

Oct

tr.size 1: 0.412

tr.size 2: 0.411

tr.size 3: 0.414

tr.size 1: 0.402

tr.size 2: 0.404

tr.size 3: 0.402

tr.size 1: 0.433

tr.size 2: 0.433

tr.size 3: 0.432

tr.size 1: 0.445

tr.size 2: 0.444

tr.size 3: 0.443

tr.size 1: 0.419

tr.size 2: 0.422

tr.size 3: 0.408

tr.size 1: 0.411

tr.size 2: 0.411

tr.size 3: 0.410

tr.size 1: 0.410

tr.size 2: 0.411

tr.size 3: 0.411

tr.size 1: 0.405

tr.size 2: 0.404

tr.size 3: 0.403

tr.size 1: 0.408

tr.size 2: 0.409

tr.size 3: 0.403

tr.size 1: 0.410

tr.size 2: 0.411

tr.size 3: 0.405

tr.size 1: 0.417

tr.size 2: 0.413

tr.size 3: 0.415

tr.size 1: 0.425

tr.size 2: 0.424

tr.size 3: 0.422

Nov

tr.size 1: 0.436

tr.size 2: 0.432

tr.size 3: 0.425

tr.size 1: 0.421

tr.size 2: 0.411

tr.size 3: 0.412

tr.size 1: 0.435

tr.size 2: 0.434

tr.size 3: 0.434

tr.size 1: 0.436

tr.size 2: 0.435

tr.size 3: 0.434

tr.size 1: 0.414

tr.size 2: 0.408

tr.size 3: 0.401

tr.size 1: 0.410

tr.size 2: 0.405

tr.size 3: 0.403

tr.size 1: 0.413

tr.size 2: 0.411

tr.size 3: 0.411

tr.size 1: 0.405

tr.size 2: 0.405

tr.size 3: 0.403

tr.size 1: 0.406

tr.size 2: 0.405

tr.size 3: 0.405

tr.size 1: 0.409

tr.size 2: 0.409

tr.size 3: 0.408

tr.size 1: 0.415

tr.size 2: 0.414

tr.size 3: 0.412

tr.size 1: 0.418

tr.size 2: 0.416

tr.size 3: 0.415

Dec

tr.size 1: 0.450

tr.size 2: 0.445

tr.size 3: 0.430

tr.size 1: 0.455

tr.size 2: 0.440

tr.size 3: 0.431

tr.size 1: 0.432

tr.size 2: 0.429

tr.size 3: 0.428

tr.size 1: 0.436

tr.size 2: 0.435

tr.size 3: 0.435

tr.size 1: 0.413

tr.size 2: 0.414

tr.size 3: 0.403

tr.size 1: 0.407

tr.size 2: 0.406

tr.size 3: 0.405

tr.size 1: 0.415

tr.size 2: 0.414

tr.size 3: 0.414

tr.size 1: 0.406

tr.size 2: 0.405

tr.size 3: 0.404

tr.size 1: 0.410

tr.size 2: 0.409

tr.size 3: 0.405

tr.size 1: 0.413

tr.size 2: 0.411

tr.size 3: 0.409

tr.size 1: 0.417

tr.size 2: 0.418

tr.size 3: 0.415

tr.size 1: 0.422

tr.size 2: 0.425

tr.size 3: 0.420

Overall

tr.size 1: 0.436

tr.size 2: 0.432

tr.size 3: 0.425

tr.size 1: 0.430

tr.size 2: 0.426

tr.size 3: 0.414

tr.size 1: 0.432

tr.size 2: 0.430

tr.size 3: 0.431

tr.size 1: 0.448

tr.size 2: 0.447

tr.size 3: 0.446

tr.size 1: 0.415

tr.size 2: 0.414

tr.size 3: 0.408

tr.size 1: 0.418

tr.size 2: 0.416

tr.size 3: 0.416

tr.size 1: 0.413

tr.size 2: 0.412

tr.size 3: 0.409

tr.size 1: 0.404

tr.size 2: 0.403

tr.size 3: 0.410

tr.size 1: 0.410

tr.size 2: 0.408

tr.size 3: 0.404

tr.size 1: 0.411

tr.size 2: 0.413

tr.size 3: 0.410

tr.size 1: 0.414

tr.size 2: 0.412

tr.size 3: 0.413

tr.size 1: 0.422

tr.size 2: 0.417

tr.size 3: 0.416

Table Appx.4: RMSE for the different ML methods in the validation and test set for the panel cross-validation for 2020.
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Month Valid. SVM Test SVM Valid. RF Test RF Valid. XGB Test XGB Valid. LASSO Test LASSO Valid. Ridge Test Ridge Valid. Logit Test Logit

Jan

tr.size 1: 0.743

tr.size 2: 0.752

tr.size 3: 0.755

tr.size 1: 0.733

tr.size 2: 0.745

tr.size 3: 0.754

tr.size 1: 0.818

tr.size 2: 0.823

tr.size 3: 0.808

tr.size 1: 0.803

tr.size 2: 0.809

tr.size 3: 0.816

tr.size 1: 0.793

tr.size 2: 0.787

tr.size 3: 0.791

tr.size 1: 0.832

tr.size 2: 0.837

tr.size 3: 0.838

tr.size 1: 0.826

tr.size 2: 0.827

tr.size 3: 0.818

tr.size 1: 0.826

tr.size 2: 0.830

tr.size 3: 0.831

tr.size 1: 0.788

tr.size 2: 0.793

tr.size 3: 0.795

tr.size 1: 0.789

tr.size 2: 0.795

tr.size 3: 0.802

tr.size 1: 0.674

tr.size 2: 0.688

tr.size 3: 0.694

tr.size 1: 0.677

tr.size 2: 0.685

tr.size 3: 0.701

Feb

tr.size 1: 0.733

tr.size 2: 0.724

tr.size 3: 0.730

tr.size 1: 0.722

tr.size 2: 0.714

tr.size 3: 0.725

tr.size 1: 0.784

tr.size 2: 0.805

tr.size 3: 0.804

tr.size 1: 0.779

tr.size 2: 0.794

tr.size 3: 0.793

tr.size 1: 0.794

tr.size 2: 0.805

tr.size 3: 0.804

tr.size 1: 0.810

tr.size 2: 0.814

tr.size 3: 0.821

tr.size 1: 0.821

tr.size 2: 0.826

tr.size 3: 0.821

tr.size 1: 0.806

tr.size 2: 0.815

tr.size 3: 0.816

tr.size 1: 0.802

tr.size 2: 0.804

tr.size 3: 0.811

tr.size 1: 0.807

tr.size 2: 0.810

tr.size 3: 0.816

tr.size 1: 0.706

tr.size 2: 0.723

tr.size 3: 0.755

tr.size 1: 0.710

tr.size 2: 0.717

tr.size 3: 0.763

Mar

tr.size 1: 0.710

tr.size 2: 0.732

tr.size 3: 0.736

tr.size 1: 0.712

tr.size 2: 0.720

tr.size 3: 0.733

tr.size 1: 0.794

tr.size 2: 0.807

tr.size 3: 0.802

tr.size 1: 0.822

tr.size 2: 0.811

tr.size 3: 0.815

tr.size 1: 0.779

tr.size 2: 0.797

tr.size 3: 0.808

tr.size 1: 0.830

tr.size 2: 0.837

tr.size 3: 0.837

tr.size 1: 0.839

tr.size 2: 0.840

tr.size 3: 0.842

tr.size 1: 0.816

tr.size 2: 0.819

tr.size 3: 0.500

tr.size 1: 0.809

tr.size 2: 0.814

tr.size 3: 0.500

tr.size 1: 0.818

tr.size 2: 0.821

tr.size 3: 0.500

tr.size 1: 0.711

tr.size 2: 0.724

tr.size 3: 0.500

tr.size 1: 0.708

tr.size 2: 0.722

tr.size 3: 0.500

Apr

tr.size 1: 0.714

tr.size 2: 0.715

tr.size 3: 0.722

tr.size 1: 0.700

tr.size 2: 0.711

tr.size 3: 0.710

tr.size 1: 0.820

tr.size 2: 0.811

tr.size 3: 0.814

tr.size 1: 0.786

tr.size 2: 0.784

tr.size 3: 0.782

tr.size 1: 0.819

tr.size 2: 0.813

tr.size 3: 0.826

tr.size 1: 0.787

tr.size 2: 0.778

tr.size 3: 0.792

tr.size 1: 0.821

tr.size 2: 0.825

tr.size 3: 0.826

tr.size 1: 0.828

tr.size 2: 0.827

tr.size 3: 0.835

tr.size 1: 0.823

tr.size 2: 0.826

tr.size 3: 0.833

tr.size 1: 0.822

tr.size 2: 0.824

tr.size 3: 0.830

tr.size 1: 0.790

tr.size 2: 0.801

tr.size 3: 0.801

tr.size 1: 0.788

tr.size 2: 0.800

tr.size 3: 0.802

May

tr.size 1: 0.702

tr.size 2: 0.722

tr.size 3: 0.718

tr.size 1: 0.678

tr.size 2: 0.702

tr.size 3: 0.700

tr.size 1: 0.813

tr.size 2: 0.811

tr.size 3: 0.807

tr.size 1: 0.823

tr.size 2: 0.823

tr.size 3: 0.820

tr.size 1: 0.791

tr.size 2: 0.794

tr.size 3: 0.793

tr.size 1: 0.823

tr.size 2: 0.827

tr.size 3: 0.830

tr.size 1: 0.824

tr.size 2: 0.826

tr.size 3 :0.824

tr.size 1: 0.821

tr.size 2: 0.823

tr.size 3: 0.825

tr.size 1: 0.818

tr.size 2: 0.811

tr.size 3: 0.823

tr.size 1: 0.821

tr.size 2: 0.818

tr.size 3: 0.828

tr.size 1: 0.731

tr.size 2: 0.743

tr.size 3: 0.750

tr.size 1: 0.733

tr.size 2: 0.748

tr.size 3: 0.757

Jun

tr.size 1: 0.745

tr.size 2: 0.743

tr.size 3: 0.733

tr.size 1: 0.724

tr.size 2: 0.732

tr.size 3: 0.745

tr.size 1: 0.812

tr.size 2: 0.804

tr.size 3: 0.799

tr.size 1: 0.804

tr.size 2: 0.799

tr.size 3: 0.790

tr.size 1: 0.798

tr.size 2: 0.820

tr.size 3: 0.827

tr.size 1: 0.816

tr.size 2: 0.820

tr.size 3: 0.820

tr.size 1: 0.830

tr.size 2: 0.834

tr.size 3: 0.833

tr.size 1: 0.821

tr.size 2: 0.826

tr.size 3: 0.828

tr.size 1: 0.820

tr.size 2: 0.823

tr.size 3: 0.830

tr.size 1: 0.818

tr.size 2: 0.820

tr.size 3: 0.828

tr.size 1: 0.750

tr.size 2: 0.753

tr.size 3: 0.758

tr.size 1: 0.744

tr.size 2: 0.751

tr.size 3: 0.753

Jul

tr.size 1: 0.738

tr.size 2: 0.758

tr.size 3: 0.777

tr.size 1: 0.735

tr.size 2: 0.745

tr.size 3: 0.760

tr.size 1: 0.828

tr.size 2: 0.821

tr.size 3: 0.795

tr.size 1: 0.807

tr.size 2: 0.809

tr.size 3: 0.806

tr.size 1: 0.803

tr.size 2: 0.820

tr.size 3: 0.823

tr.size 1: 0.820

tr.size 2: 0.823

tr.size 3: 0.825

tr.size 1: 0.815

tr.size 2: 0.818

tr.size 3: 0.817

tr.size 1: 0.837

tr.size 2: 0.839

tr.size 3: 0.839

tr.size 1: 0.832

tr.size 2: 0.833

tr.size 3: 0.840

tr.size 1: 0.830

tr.size 2: 0.833

tr.size 3: 0.842

tr.size 1: 0.744

tr.size 2: 0.754

tr.size 3: 0.756

tr.size 1: 0.743

tr.size 2: 0.750

tr.size 3: 0.754

Aug

tr.size 1: 0.802

tr.size 2: 0.792

tr.size 3: 0.812

tr.size 1: 0.773

tr.size 2: 0.780

tr.size 3: 0.783

tr.size 1: 0.818

tr.size 2: 0.814

tr.size 3: 0.817

tr.size 1: 0.807

tr.size 2: 0.803

tr.size 3: 0.800

tr.size 1: 0.783

tr.size 2: 0.752

tr.size 3: 0.775

tr.size 1: 0.819

tr.size 2: 0.821

tr.size 3: 0.824

tr.size 1: 0.828

tr.size 2: 0.827

tr.size 3: 0.827

tr.size 1: 0.822

tr.size 2: 0.824

tr.size 3: 0.824

tr.size 1: 0.819

tr.size 2: 0.822

tr.size 3: 0.827

tr.size 1: 0.815

tr.size 2: 0.820

tr.size 3: 0.823

tr.size 1: 0.753

tr.size 2: 0.757

tr.size 3: 0.801

tr.size 1: 0.751

tr.size 2: 0.753

tr.size 3: 0.798

Sep

tr.size 1: 0.720

tr.size 2: 0.744

tr.size 3: 0.767

tr.size 1: 0.723

tr.size 2: 0.734

tr.size 3: 0.745

tr.size 1: 0.810

tr.size 2: 0.804

tr.size 3: 0.803

tr.size 1: 0.808

tr.size 2: 0.798

tr.size 3: 0.795

tr.size 1: 0.803

tr.size 2: 0.812

tr.size 3: 0.815

tr.size 1: 0.817

tr.size 2: 0.819

tr.size 3: 0.820

tr.size 1: 0.831

tr.size 2: 0.834

tr.size 3: 0.834

tr.size 1: 0.824

tr.size 2: 0.825

tr.size 3: 0.827

tr.size 1: 0.820

tr.size 2: 0.822

tr.size 3: 0.827

tr.size 1: 0.811

tr.size 2: 0.815

tr.size 3: 0.822

tr.size 1: 0.765

tr.size 2: 0.777

tr.size 3: 0.798

tr.size 1: 0.761

tr.size 2: 0.769

tr.size 3: 0.790

Oct

tr.size 1: 0.711

tr.size 2: 0.731

tr.size 3: 0.728

tr.size 1: 0.718

tr.size 2: 0.711

tr.size 3: 0.737

tr.size 1: 0.821

tr.size 2: 0.820

tr.size 3: 0.816

tr.size 1: 0.785

tr.size 2: 0.790

tr.size 3: 0.789

tr.size 1: 0.793

tr.size 2: 0.785

tr.size 3: 0.818

tr.size 1: 0.815

tr.size 2: 0.815

tr.size 3: 0.818

tr.size 1: 0.827

tr.size 2: 0.831

tr.size 3: 0.831

tr.size 1: 0.829

tr.size 2: 0.831

tr.size 3: 0.833

tr.size 1: 0.821

tr.size 2: 0.826

tr.size 3: 0.830

tr.size 1: 0.818

tr.size 2: 0.820

tr.size 3: 0.822

tr.size 1: 0.745

tr.size 2: 0.755

tr.size 3: 0.783

tr.size 1: 0.740

tr.size 2: 0.749

tr.size 3: 0.776

Nov

tr.size 1: 0.689

tr.size 2: 0.687

tr.size 3: 0.704

tr.size 1: 0.677

tr.size 2: 0.723

tr.size 3: 0.717

tr.size 1: 0.804

tr.size 2: 0.797

tr.size 3: 0.793

tr.size 1: 0.817

tr.size 2: 0.805

tr.size 3: 0.802

tr.size 1: 0.801

tr.size 2: 0.811

tr.size 3: 0.827

tr.size 1: 0.812

tr.size 2: 0.824

tr.size 3: 0.828

tr.size 1: 0.823

tr.size 2: 0.826

tr.size 3: 0.828

tr.size 1: 0.823

tr.size 2: 0.820

tr.size 3: 0.823

tr.size 1: 0.811

tr.size 2: 0.822

tr.size 3: 0.822

tr.size 1: 0.808

tr.size 2: 0.815

tr.size 3: 0.820

tr.size 1: 0.769

tr.size 2: 0.772

tr.size 3: 0.775

tr.size 1: 0.761

tr.size 2: 0.766

tr.size 3: 0.770

Dec

tr.size 1: 0.632

tr.size 2: 0.656

tr.size 3: 0.697

tr.size 1: 0.598

tr.size 2: 0.643

tr.size 3: 0.645

tr.size 1: 0.812

tr.size 2: 0.809

tr.size 3: 0.810

tr.size 1: 0.803

tr.size 2: 0.795

tr.size 3: 0.797

tr.size 1: 0.798

tr.size 2: 0.797

tr.size 3: 0.820

tr.size 1: 0.817

tr.size 2: 0.819

tr.size 3: 0.821

tr.size 1: 0.819

tr.size 2: 0.822

tr.size 3: 0.822

tr.size 1: 0.820

tr.size 2: 0.820

tr.size 3: 0.821

tr.size 1: 0.815

tr.size 2: 0.816

tr.size 3: 0.820

tr.size 1: 0.811

tr.size 2: 0.811

tr.size 3: 0.818

tr.size 1: 0.744

tr.size 2: 0.748

tr.size 3: 0.755

tr.size 1: 0.738

tr.size 2: 0.744

tr.size 3: 0.749

Overall

tr.size 1: 0.720

tr.size 2: 0.701

tr.size 3: 0.755

tr.size 1: 0.710

tr.size 2: 0.700

tr.size 3: 0.731

tr.size 1: 0.811

tr.size 2: 0.811

tr.size 3: 0.806

tr.size 1: 0.799

tr.size 2: 0.795

tr.size 3: 0.796

tr.size 1: 0.795

tr.size 2: 0.798

tr.size 3: 0.810

tr.size 1: 0.810

tr.size 2: 0.815

tr.size 3: 0.817

tr.size 1: 0.824

tr.size 2: 0.827

tr.size 3: 0.826

tr.size 1: 0.821

tr.size 2: 0.824

tr.size 3: 0.806

tr.size 1: 0.814

tr.size 2: 0.815

tr.size 3: 0.801

tr.size 1: 0.810

tr.size 2: 0.811

tr.size 3: 0.800

tr.size 1: 0.733

tr.size 2: 0.744

tr.size 3: 0.694

tr.size 1: 0.732

tr.size 2: 0.742

tr.size 3: 0.691

Table Appx.5: AUC for the different ML methods in the validation and test set for the panel cross-validation for 2020.
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F An overview of the alternative CATE estimators

The BLP, GATEs and CLAN analysis we presented has been performed by using the CATEs

estimated by using various meta-learners and the Generalized Random Forests (CFs) method. CFs

modifies a particular standard (predictive) machine learning method (Random Forests) so that it

directly targets the estimation of the CATE. Instead, meta-learners operate through a multi-step

procedure that break down the task of estimating CATE into several smaller sub-problems that can

be addressed using any standard (predictive) machine learning technique. They typically involve

the following steps:

1. Estimation of nuisance parameters: auxiliary components such as the the propensity scores

are estimated using machine learning algorithms.

2. Construction of an objective function: The estimated nuisance components are then used

to construct a tailored minimization problem whose solution targets the CATE function.

This step is designed to isolate the heterogeneity in treatment effects while accounting for

confounding.

3. Solution via machine learning: The resulting minimization problem is solved via machine

learning.

4. Prediction of CATEs: Finally, the learned model is used to generate predictions of the CATE

for each observational unit, thus enabling individualized causal effect estimation.

The meta-learners we have used are the S-Learner, the T-Learner, the R-Learner and the

DR-Learner. They are all based on the assumption of strong ignorability. We will provide a brief

overview in what follows. m(1, x) denotes the conditional mean function under treatment, m(0, x)

the conditional mean function in absence of treatment, and e(X) the propensity score.

The first meta-learner we explore is the S-Learner. It fits a single model in which the observed

outcome is modeled as a function of the covariates and the treatment indicator variable. The

resulting model is then used to obtain two predictions for each subject: under treatment and

control. The CATE is then estimated by taking the differences between the two predictions:

∆̂s(x) = m̂(1, x) − m̂(0, x). Instead, the T-Learner employs two different models estimated

separately on the treated and control samples, and then the CATE is obtained as a difference, as

in the S-Learner.

The R-Learner, introduced by Nie and Wager (2021), builds on the partially linear model while

allowing for covariate-specific treatment effects. In this setting, the potential outcome model is given

by Y D = ∆(X)D+ g(X)+UD, with E[UD | D,X] = 0, which implies that the observed outcome

satisfies Y = D∆(X)+ g(X)+UD. By defining the outcome regression function m(X) := E[Y | X],

the model can be transformed into a residualized form:

Y −m(X) = ∆(X)(D − e(X)) + UD.
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This motivates the R-Learner objective:

∆̂rl(X) = argmin
∆

N∑
i=1

(Yi − m̂(Xi)−∆(Xi)(Wi − ê(Xi)))
2 ,

where the nuisance parameters m̂(X) and ê(X) are estimated using high-quality machine learning

methods, typically via cross-fitting 41 (Nie and Wager, 2021).

When one does not wish to impose linearity on ∆(X), the R-Learner objective can be rewritten as

∆̂rl(X) = argmin
∆

N∑
i=1

(Di − ê(Xi))
2

(
Yi − m̂(Xi)

Di − ê(Xi)
−∆(Xi)

)2

.

This representation highlights that any supervised learning algorithm capable of handling weighted

minimization problems can be employed (e.g. neural networks, random forests, and gradient

boosting among others). In this formulation, the weights are (Di − ê(Xi))
2, the pseudo-outcome is

Yi−m̂(Xi)
Di−ê(Xi)

, and the original covariates X are used as features.

The DR-Learner, introduced by Kennedy et al. (2020), constructs a pseudo-outcome in the first

stage, defined as

ỸATE = m̂(1, X)− m̂(0, X)︸ ︷︷ ︸
outcome predictions

+
D(Y − m̂(1, X))

ê(X)
− (1−D)(Y − m̂(0, X))

1− ê(X)︸ ︷︷ ︸
weighted residuals

,

similarly to Eq. (17) and targets the CATE function through the conditional expectation

∆(x) = E
[
ỸATE | X = x

]
.

Since E[ỸATE | X] is a conditional expectation function of random variable, it can be approximated

using standard supervised learning techniques. The DR-Learner uses this pseudo-outcome as the

dependent variable in a generic machine learning regression:

∆̂dr(X) = argmin
∆

N∑
i=1

(
Ỹi,ATE −∆(Xi)

)2
.

The Generalized Random Forests (CFs) estimator cannot be properly considered a Meta-learner

because it alters a specific ML method in such a way that it estimates the CATE. The development of

Generalized Random Forests (CFs) has evolved through multiple stages. The Generalized Random

41A simple case arises, for instance, if we model the CATE as a linear function ∆(X) = X ′β, the
minimization becomes

β̂rl = argmin
β

N∑
i=1

(
Yi − m̂(Xi)− X̃ ′

iβ
)2

,

where X̃i = (Di − ê(Xi))Xi are the so-called modified or pseudo-covariates. The estimated CATE is then

given by ∆̂rl(x) = x′β̂rl, noting that this differs from X̃β̂rl. In this case, obtaining β̂rl reduces to a standard
regression of the residualized outcome on the modified covariates, and shrinkage estimators such as Lasso
can be readily applied. Importantly, the nuisance parameters can still be estimated using non-linear machine
learning methods
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Forest introduced by Wager and Athey (2018) is constructed as an ensemble of Causal Trees and

is primarily designed for experimental settings. Subsequently, Athey et al. (2019) extended this

approach by proposing an approximation to the splitting rule of Causal Trees for binary random

treatments, while also generalizing the method to observational settings and continuous treatments.

Conceptually, modern Generalized Random Forests estimate CATEs via a localized, individualized

residual-on-residual regression of the form

∆̂cf(x) = argmin
∆

{
N∑
i=1

πi(x) [(Yi − m̂(Xi))−∆(x)(Di − ê(Xi))]
2

}
,

where πi(x) denotes the frequency with which the i-th training sample falls into the same leaf as

the target sample x. This procedure represents a localized version of the partially linear estimator,

with the nuisance components m̂(X) and ê(X) being estimated in a preliminary step, typically

through cross-fitting.

Finally, in the main text, for comparability with CFs, we use Random Forest in steps 1 and 3

of the meta-learners described above.

GATES estimates from January to December 2020 are summarized in Figure Appx.11.
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Figure Appx.11: GATES estimates from January to December 2020. The results are shown for
the four quartiles according to CATE. In each graph, the colored bars are from left to right for
Generalized Random Forest (orange), DR-learner (purple), R-learner (green), S-learner (red) and
T-learner (blue).
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G DML AIPW estimator
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Figure Appx.12: Double Machine Learning (DML) AIPW estimates (with 5-fold cross-fitting and
nuisance parameters estimated with Generalized Random Forest) from January to December 2020.
ATE{ts,ts−1} refers to the ATE estimated by considering the combined cohort of treated (firms
in ts) and control firms (firms in ts−1) as a unique sample. Notice also that ATT = ATT{ts,ts−1}
because all the treated units are in ts.
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H Estimated Propensity Scores

The propensity score is defined in equation (3) as P (Di,{ts,ts−1} = 1|Xi,{ts−1,ts−2}) = e(Xi,{ts−1,ts−2}),

where Di,{ts−1,ts} is a dummy variable indicating whether an observation belongs to the treated

group or to the control group, and Xi,{ts−1,ts−2} are the corresponding explanatory variables.

Therefore, the propensity score refers to the conditional probability of belonging to the cohort of

firms observed in t− s considering the unique sample that combines the cohort of treated (firms

observed in ts) and the cohort of control firms (firms observed in ts−1). Following the methodology

of Chernozhukov et al. (2018), a K-fold cross-fitting strategy is employed to estimate this quantity

without overfitting and Generalized Random Forest Lerner is used.
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Figure Appx.13: Propensity scores estimates from January to December using 5-Folds DML-AIPW
based on Generalized Random Forest.
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