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Abstract

Our paper presents a causal Machine Learning (ML) methodology to study the
heterogeneous effects of economy-wide shocks and applies it to the impact of the
COVID-19 crisis on exports. This method is applicable in scenarios where, due to
the pervasive nature of the shock, it is difficult to identify a control group that is
not affected by the shock and to determine ex ante differences in shock intensity
across units. In particular, our study investigates the effectiveness of different machine
learning techniques in predicting firms’ trade and, by building on recent developments
in causal ML, these predictions are used to reconstruct the counterfactual distribution
of firms’ trade under different COVID-19 scenarios and investigate the heterogeneity
of treatment effects. Specifically, we focus on the probability of Colombian firms
surviving in the export market under two different scenarios: a COVID-19 setting and
a non-COVID-19 counterfactual situation. On average, we find that the COVID-19
shock decreased a firm’s probability of surviving in the export market by about 20
percentage points in April 2020. We study the treatment effect heterogeneity by
employing a classification analysis that compares the characteristics of the firms on

the tails of the estimated distribution of the individual treatment effects.

Keywords: Economy-wide shocks; Causal Machine Learning; Heterogeneous Treatment
Effects; COVID-19; International Trade.
JEL Codes: F14; F17; D22; L.25



1 Introduction

This paper presents a methodology to study the heterogeneous effects of economy-wide
shocks, applicable in scenarios where neither a control group unaffected by the shock nor
an ex-ante definition of the intensity of the shock for each unit is possible. We apply this
methodology to the impact of the COVID-19 crisis on exports. In particular, we aim to
estimate the causal effect of COVID-19 on a firm’s probability of survival in the export
markets and to study the heterogeneity of this effect. The main hurdles for this evaluation
task are related to the pervasiveness of the COVID-19 shock. On the one hand, the fact
that all firms are eventually exposed to the effects of the COVID-19 crisis makes it hardly
possible to find a control group of firms to be used to build a counterfactual non-COVID-19
scenario. On the other hand, adopting a continuous treatment variable would imply defining
ex-ante the main patterns through which the COVID-19 shock has affected firm-level trade.
This task is highly demanding, given that the economy-wide impact of the shock is coupled
with complex interdependencies between firms and products across sectors and countries.
The paper’s main idea is to address these evaluation challenges, which are present when
studying the heterogeneous impact of economy-wide shocks, by leveraging the predictive
capabilities of Machine Learning (ML) techniques.

To face the COVID-19 crisis, governments implemented social distancing and lockdown
policies, exacerbating supply and demand shocks (World Bank, 2020). In a interconnected
world, the impact of the pandemic on international trade has gained great attention
(Felbermayr and Gorg, 2020; Antras et al., 2023; Bonadio et al., 2020; Evenett, 2020).
Global trade, which is typically more volatile than output and tends to fall sharply during a
crisis, has shown the biggest fall since the 2009 global financial crisis. From the beginning
of the COVID-19 epidemic, scholars underlined that, though its impact on international
trade could have been comparable to the Great Trade Collapse of 2008-2009, this time,
the demand-side shock is accompanied by a supply-side shock (Baldwin and Tomiura,
2020). Moreover, this supply-side effect could be reinforced by a supply-side contagion via
importing/supply chains, which have grown in relevance during the last decade (Antras and
Chor, 2022). In other words, supply disruptions in the countries providing intermediate
inputs to a given country are likely to hurt also its export performance (Halpern et al., 2015;
Navas et al., 2020).

We focus on Colombian exporters because of the vulnerability of the Colombian economy
to the COVID-19 shock and the availability of detailed customs data. As in many other
developing and industrialized countries, Colombia experienced domestic supply and demand
shocks in 2020, with factory closures, the suspension of some public services and supply
chain disruptions.

By interpreting exporters’ dynamics as a complex learning process,' this paper’s first

IFirms have heterogeneous and incomplete information about the trade opportunities. This is true both
on the exporting and the importing side of firm activities. For example, in Albornoz et al. (2012) and Eslava



contribution is exploring and comparing the effectiveness of different ML techniques in
predicting firms’ trade status in two different scenarios, a COVID-19 and a non-COVID-19
setting. ML techniques have been successfully applied to predict firm performances in
high-dimensional contexts (Bargagli-Stoffi et al., 2021) in which the number of potentially
relevant explanatory variables is very high. Our paper fits into a nascent literature that is
applying ML techniques to study international trade patterns (Breinlich et al., 2022) and,
up to what we know, in our study for the first time ML techniques are used to investigate
firm-level international trade performance. Estimating more accurately the likelihood of a
firm’s success in exporting could be useful to increase the effectiveness of export promotion
agencies (Van Biesebroeck et al., 2015) by helping them target their activities. However,
the effectiveness of ML in improving the prediction of a firm’s success cannot be taken for
granted, especially for developing countries, as shown by McKenzie and Sansone (2019).
This paper’s second and main contribution is to show how to use these predictions to
estimate the causal effect of the COVID-19 shock at the firm level and to study its possible
heterogeneity. We use the estimated ML model with the best performance in predicting the
2019 export status of firms exporting in 2018 to build a 2020 non-COVID-19 counterfactual
outcome for firms exporting in 2019. Then, we compare these counterfactual non-COVID-19
firm-level export probabilities with the predicted probabilities of the best-performing ML
model using the characteristics of 2019 exporters to predict their export status in 2020. The
latter estimated probabilities summarize the information on the observed COVID-19 scenario
and express it in a metric comparable with the estimated counterfactual non-COVID-19
outcomes. In the literature using ML counterfactuals when no control group is available
(Cerqua and Letta, 2020; Fabra et al., 2022), it is instead common to estimate causal effects
by comparing the counterfactual predictions with the observed outcome in case of treatment,
following the so-called “consistency assumption”: if the outcome in case of treatment
is observed then it also represents the potential outcome under treatment. We follow
Chernozhukov et al. (2023)? by using ML techniques to reconstruct firm potential outcomes
in the case of no treatment and also to predict the outcomes in the treatment scenario. From
a methodological standpoint, our study represents the pioneering application and adaptation
of the generic machine learning tools proposed by Chernozhukov et al. (2023) in a context
where a control group is unavailable.® Furthermore, we provide guidance on utilizing in-time
placebo tests to assess the credibility of counterfactual estimates. Additionally, we compare
the estimation results of the average treatment effect and treatment effect heterogeneity

obtained by employing the predicted outcomes in the case of treatment, as proposed by

et al. (2015) exporting firms are uncertain and learn about the appeal of their products and, more in general,
about the profitability of exporting their products on the international markets. By searching for clients
and observing their realized profitability, firms update their beliefs about their capabilities in international
markets.

2See formulas 2.6 and 2.7.

3For applications of the generic machine learning methodology in economics see Deryugina et al. (2019);
Magnan et al. (2021); Baiardi and Naghi (2024); Buhl-Wiggers et al. (2024).



Chernozhukov et al. (2023), with those obtained using the observed outcomes of treated
units (i.e., following the Cerqua and Letta (2020) and Fabra et al. (2022) approach). Our
findings suggest that while the estimates of the average treatment effect remain robust across
methodologies, the former approach should be preferred when the objective is to identify the
observations with the highest and lowest treatment effects, and subsequently determine the
factors contributing to treatment effect heterogeneity.

Examining the heterogeneous effects of economy-wide shocks is a crucial undertaking as
it represents the foundational stage in devising policy interventions intended to mitigate their
deleterious outcomes and reactivate economic operations. However, from a methodological
point of view, investigating the treatment effect heterogeneity is not a straightforward task
when its potential determinants are many. The traditional approach splits the sample into
groups to assess the significance of the difference in the treatment effects of the groups.
Unfortunately, this approach is prone to overfitting, and finding statistically significant
differences out of all possible splits might be entirely due to random noise. Recently, new
tools based on ML have been developed to identify subgroups that are particularly responsive
to the treatment (Athey et al., 2019; Chernozhukov et al., 2023). Building on the recent
progress in causal ML application to the analysis of heterogeneous effects, in this paper we
adopt an agnostic ML model to investigate treatment effect heterogeneity. In particular, we
interpret the estimated effects stemming from our ML counterfactual empirical model by
using the Sorted Effects method (Chernozhukov et al., 2018, 2023). This method focuses on
the tails of the estimated distribution of the firm-level treatment effect to identify the units
that are most affected and those that are least affected by the treatment (whose characteristics
are compared). We provide evidence that contrasting the estimated counterfactual outcomes
with the outcomes predicted for the treatment scenario (and not directly with the observed
outcomes under treatment) is crucial to correct the estimation error arising from the imperfect
reconstruction of the unobservable counterfactual.

Our paper is connected to the literature on the heterogeneous impact of the COVID-19
shock on trade. Using firm-level monthly data on Spanish trade in goods, de Lucio et al.
(2020) find that exports decreased more in countries that introduced strict policies to contain
COVID-19 and for goods that are consumed outside the household, particularly between
March and May, showing how Spain’s export performance during the pandemic depends on
COVID-19-induced demand shocks in export markets and the characteristics of products.
Using monthly bilateral product-level trade flows that cover three-quarters of world trade,
Berthou and Stumpner (2024) also find that the impact of the COVID-19 shock on exports
was particularly strong in the spring of 2020, and that demand shocks related to COVID-19
impacted exports directly (shocks in importing countries) but also indirectly (shocks in third
countries). Using a sector-level gravity model, Espitia et al. (2021) show that, during the
COVID-19 crisis, sectors that tend to be relatively less internationally integrated suffered

less from foreign shocks but were more vulnerable to domestic shocks. Using data on Chinese



imports at the country-product level, also Liu et al. (2021) show that the COVID-19 effects
are heterogeneous, being weaker for medical goods and stronger for durable consumption
goods. All these papers base their identification strategy of the average COVID-19 effect
on the cross-country differences in the implementation of lockdown measures over time
and study treatment effect heterogeneity by focusing on subsamples or interacting the
treatment variable with other possible determinants of heterogeneity. We share with these
studies the ambition to estimate the causal impact of COVID-19 on trade and its possible
heterogeneity. However, we use a different approach based on constructing a counterfactual
using the predictive power of ML that, as explained above, recognises that all firms are
directly or indirectly affected by this economy-wide shock and that it is very challenging
to define ex-ante a variable summarising the (differential) intensity of the shock for each
firm. Moreover, we implement the heterogeneity analysis by using a classification analysis
that safeguards against the risks of overfitting and multiple testing. Among the possible
determinants of heterogeneity, we also consider a firm’s diversification on the export and
import side. Therefore, our study is also related to the international trade literature on
the role of diversification in mediating the impact of adverse shocks (Kramarz et al., 2020;
Grossman et al., 2021; Lafrogne-Joussier et al., 2022).

Using our innovative ML approach, we find that the COVID-19 shock reduced the
probability of a Colombian firm surviving in the export market in April 2020 by around
20 percentage points. Our analysis of the estimated distribution of treatment effects shows
that there is considerable heterogeneity behind these average results. We highlight that
more affected firms tend to be small-sized and more exposed to export destinations and
import source countries that are more severely hit by the containment policies related to the
COVID-19 shock. We identify the firms most and least affected by COVID-19 and compare
their characteristics by combining the Sorted Partial Effects methodology with our causal
ML approach, which shows that integration into global value chains on the import side is
an important determinant of exporters’ resilience to the COVID-19 shock. Our findings
contribute to the development of targeted recovery policies by identifying the firms most
affected by exogenous widespread shocks.

The paper is structured as follows. Section 2 details our empirical strategy. Section 3
presents the firm-level data, variables employed in the analysis, and descriptive statistics.
Section 4 reports the estimation results, and Section 5 summarizes our findings and discusses

the relevance and limitations of our analysis.

2 Methodological framework

This section lays out our empirical approach to estimating the effect of an economy-wide
shock on firms’ survival probabilities in export markets and exploring its heterogeneity based

on firms’ observable attributes.



2.1 Owur Causal ML setup

We aim to study the (conditional) average effect of an economy wide shock (e.g., the
COVID-19 effect in our specific application) on the probability that the cohort of firms
that were exporting in a given month during the pre-shock year ¢,_; (e.g., year 2019 in our
specific application) will export again during the same month of the year of the shock ¢
(that is 2020 in our specific application).* Therefore, the empirical analysis is carried out
separately for each month.” This allows the effects of the explanatory variables (e.g., the
hypothesized determinants of firm export status) to vary throughout the year.

For economy-wide shocks such as COVID-19, there is no unambiguous definition of an
“untreated” group because, plausibly, all firms are subject to the shock. Consequently, if
we define the potential outcome for firm i at time ¢ under treatment status D € {0,1} as
Y,P—where D indicates the presence of the shock—the standard Conditional Independence
Assumption (CIA), Y% 1L D;y, | Xiy,_,, used to identify the Average Treatment Effect on
the Treated (ATT) when a contemporaneous control group is available cannot be invoked as
the assumption of common support is violated since P(D;; ;=1 | X;;, ,) = 1. Indeed, in
this setting, the ATT coincides with the Average Treatment Effect (ATE) for the cohort
of COVID-19-exposed firms, ATE = E(Y,, — Y%).% Furthermore, even an identification
strategy based on comparing individual firms subject to different treatment intensities does
not seem feasible due to the complex and ex-ante unknown paths through which firms are
potentially exposed to treatment. Though we study whether treatment effect heterogeneity
depends, inter alia, on firm-specific measures of the intensity of the COVID-19 shock,” the
intensity of treatment effect might also depend on other firms’ characteristics, such as the
identity of suppliers and clients, the characteristics of the traded final product, among many
others, that we cannot know in advance and whose interactions are a prior: unknown.

Therefore, we refer to all the observations (Y;;,, X;;, ,) for the cohort of firms that
exported in ts_; as the treated group (i.e., all observations belonging to our sample at t).
Moreover, invoking the so-called consistency assumption, we assume that for the treated

group the observed outcome in the year of the shock Y, represents the potential outcome

4Although the primary analysis focuses on the extensive margin, the proposed methodology is general
and can be readily extended to continuous outcomes, allowing an analysis of the intensive margin. Descriptive
evidence for the intensive margin is provided in the Appendix.

°In line with the literature on this topic (see, e.g., de Lucio et al., 2020; Berthou and Stumpner, 2024;
Espitia et al., 2021; Liu et al., 2021), we perform a monthly analysis as the COVID-19 shock has evolved
rapidly and unevenly over the months in 2020, as described in the Appendix A.

While we assume ATT = ATE because we think that all firms are subject to the economy-wide
COVID-19 shock, this does not imply that all firms experience a non-zero effect. Some treated firms may
have a negligible or even positive impact from the shock. In such cases, our ATT estimate is not biased
but simply reflects treatment—effect heterogeneity. However, if some firms were in fact not subject to the
COVID-19 shock (i.e., untreated), our methodology would underestimate the ATT.

"These indexes are described in detail in section 3. They are based on firms’ past export and import
activities in different countries and on the time-varying strength of the virus and the stringency of the
policies aimed at mitigating its spread.



in case of treatment Y7}, .°

As is common when studying the effects of widespread shocks, we must therefore use the
information about behavior before the shock to estimate the counterfactual behavior (in the
hypothetical situation without the shock) during the actual shock. This process involves
forecasting the future conduct of entities based on their historical behavior, an application
perfectly suited to ML techniques, which are designed for such out-of-sample prediction tasks.
In line with the reasoning of Varian (2016), and drawing parallels with the applications
employed by Cerqua and Letta (2020), and Fabra et al. (2022), we harness the predictive
strength of ML techniques. This allows us to construct a hypothetical scenario for firm-level
outcomes during the shock period, using pre-shock data concerning firms’ export behaviors
and attributes. We will use information on the export status in a given month of ¢,_; (that
is 2019 in our specific application) for firms that were exporting in the same month of year
ts_o (e.g., year 2018 in our specific application) and the observed characteristics of such firms
in t,_5 to learn the counterfactual function that we apply to the treated group for estimating
Y).. We refer to the observations (Y, ,, Xy, _,) for the cohort of firms that exported in t,_,
as the control group.

The main assumptions used to reconstruct the unobserved counterfactual outcome during
the year of the shock using the pre-shock observed firms’ behaviour are: (i) absence of
anticipatory effects of the shock on covariates measured at t,_; and t,_5 and on the outcome
at t,_1, (ii) stability of the counterfactual function in time and (iii) a common support

assumption. They are explained in detail below.

(i) No anticipation effects on outcomes and covariates. Neither observed outcomes at 5 — 1

nor covariates at t, — 2 and t, — 1 are affected by the shock happening at t,:

Vit = Yi?ts,l, X = th for t=(ty—1,t,—2) (1)

Notice that, since the treatment occurs at t5, for (1) to hold it is sufficient to rule out

any effect of the future shock at ¢ on the observed Y; Moreover, (1) implies that the

ls—1

CIA holds for the control group at t,_y, that is, Y} 1L Di;,, | X;,,_,. Consequently,

8The consistency assumption corresponds to the first component of the Stable Unit Treatment Value
Assumption (SUTVA; Keele, 2015), which requires that there are no hidden forms of treatment. We maintain
this assumption by adopting a deliberately broad definition of treatment — being in the sample at time
ts — which, while encompassing a potentially different intensity of the shock for each unit, remains useful
for generating policy recommendations concerning the firms relatively more affected by the shock. These
recommendations are informative even if treatment-effect heterogeneity is partly confounded by heterogeneity
in the treatment itself, since firms that are more affected may be so either because their characteristics are
correlated with higher treatment intensity or because the treatment interacts with their characteristics. The
second component of SUTVA — the no-interference assumption — is not relevant in our setting because
we do not rely on a contemporaneous control group that could be indirectly affected and our focus is on
estimating the total effect of the treatment, which by construction includes both the direct effect on a
unit from the treatment it receives and any indirect effects arising from spillovers or general-equilibrium
adjustments. Disentangling between direct and indirect effects lies beyond the scope of this paper.

7



(iii)

at t,_1 the conditional expectation of the observed outcome coincides with that of the

potential outcome under no treatment: E[Y}, | Xi;, ] =E[Y;, | | X4, _,].

Stability of the Counterfactual Function. This assumption is about the stability of the
function that expresses the expected value of the conditional potential outcome in time.
Define Y%, = fP(X?, 1) + u),, where fP(-) is a generic model or function representing
the relationship between explanatory variables and the outcome in the absence of the
shock such that E[Y}|X?, ] = f(X,_)). Under (i), for t = t, — 1 we have that
Vieo1 = [ 1 (Xip.—2) +u),,_, such that E[Y;; 1] X;,, o] = P _(Xit,—2). The second
assumption states that the function f? does not depend on t, i.e., it is stable over the

two considered years:

foa=f =1 (2)

Under assumptions (i) and (i), if X, , = Xy, , then E[Y, | X;

Xit. ). In other words, the conditional expectation of the potential outcome under no

i,sfl] = E[Y;?ts_l ’

treatment at ¢, coincides with that at t,_;.

Common support. The support of the distribution of the explanatory variables of the
firms belonging to the treated group is included in the support of the distribution of

the explanatory variables of the firms belonging to the control group:

P(D; -1y = X t—1,0,-21) = e(Xiqro—1,4,-2)) < 1 (3)

where D; ¢, 14,1 is a dummy variable indicating whether an observation belongs to
the treated group or to the control group, and X; g, 1,2y are the corresponding
explanatory variables. Therefore, this expression defines a condition on the values
of the propensity score, which we denote as (X g#,1+,—2)). This assumption allows

nonparametric identification of the (conditional) average effects.

Thanks to these assumptions, when X, , = Xj;, ,, we have that E[Y, | X, ] =

E[YS, | | Xis_,] =E[Y_, | Xis_,]: the conditional expectation function of the potential

outcome in case of no treatment at t,_; can be identified by computing the conditional

expectation function of the observed outcome at t,_; and it coincides with the conditional

expectation function of the potential outcome in case of no treatment at ;.

Since f? is in practice unknown, we must estimate it. Under the above assumptions,
we can write Y, = fO(Xj.,—1) +uf, , such that E[Y}% | X, 1] = f%(X;,-1), and we can

use data on t; — 2 and t, — 1 to estimate Y}, | = f%(Xis,—2) +uf,_; and retrieve f°. By

applying this invariant estimated function to the covariates of t;, — 1, we can obtain the

predictions for the counterfactual (without the shock) outcome in ¢,:

Prediction error ~ Orthogonal error

}A/O _ /0 X, _YO o 80 . 0 4
its = [ (Xit,1) = its U . (4)

7 i,ts i,ls



The model we utilize to derive this counterfactual (and the counterfactual itself) is
referred to as the “Shock Unaware Machine” (SUM), a term acknowledging the ML techniques
employed in constructing the counterfactual and the fact that no information about the
shock is used in the analyses. In the application we present in this paper, we rely on the
“K-fold” cross-validation method (with K = 5) to discriminate between the considered ML
techniques. We randomly divide the set of exporters observed in ¢, — 2 = 2018 (considering
the exporting success during the same month in ¢, — 1 = 2019 as the outcome) into 5 equally
sized groups and obtain the predictions for the firms belonging to a group by estimating
Y 0019 = fO(XZ-72018) + U?,2019 with different ML models on the firms belonging to the other
groups. Then we compute the accuracy of the different models for each month and choose
the model with the best average performance across months. Notice that this comparison is
entirely based on the pre-pandemic accuracy of the ML models by comparing the predictions
f/molg with the observed Y; 2919, not on its merits in predicting the firms’ outcomes in 2020.
Finally, we obtain the Y%, by estimating Y;a019 = f*(Xi201s) + 09 on the entire set of
2018 units (also in this case month by month) and, as shown in (4), applying the estimated
function fo to the set of 2019 units. Given that during the first three months of 2020
Colombia was in practice not exposed to COVID-19 (and therefore Yja020 = ¥;%0y), if
assumption (2) holds, we expect that in those months the accuracy of the predictions 171-72019
obtained in the cross-validation step for 2019 will be very similar to the accuracy of EA/Z-?QO%
for 2020.

Following Cerqua and Letta (2020) and Fabra et al. (2022), we define the simple
comparison of the observed outcome under the shock in ¢, with the estimated counterfactual
outcome as an estimator of the individual-specific shock effect «;. This comparison is
represented as:

a; =Yy, =YY (5)

ists
This provides the full distribution of estimated individual treatment effects, that is, each
unit’s Conditional Average Treatment Estimate (CATE) estimate (Salditt et al., 2024).

The ATE and the CATE,, that is the Conditional Average Treatment Effect for those
units with Z;;,_1 = 2z;+,-1 where Z is a subset of the variables X (Z C X),? are estimated
by averaging these estimated individual treatment effects. Therefore, the estimators of ATE
and CATE, based on évl- can be defined as:

1 N
03 (6)
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where N is the number of observations, C, = {i : Z; =21, .t and N, = |C,].
As it is shown below, &, is an unbiased estimator of CATE, if in the relevant subsample

E[EY, ], is zero.

Hs—1

the mean of the expected prediction error, (1/N.) > ¢

9For example, CATE,..1ie is the average treatment effect for firms belonging to the textile industry.
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Notice that in the second row, we substitute Eq. (4) plugged in Eq. (5). Similarly, & is an
unbiased estimator of ATE if the mean of the expected prediction error, (1/N) SN E[E 0.0

is zero, and & is an unbiased estimator of the unit i’s CATE if E (£),.]=0.

In what follows, we introduce alternative estimators that compare the predicted counterfactual
outcomes with predicted outcomes under the treatment scenario, rather than directly with
the observed treatment outcomes. The first step is to decompose the observed outcome
in t, under the shock, Y;t , into a generic model or function f1(X} it.—1), capturing the
relationship between covariates and the outcome during the shock, and a residual component

uzlt orthogonal to the covariates:

zts = f ( zts—l) + U’g,ts? s.1. E[ | let L= fl(Xil,ts—1)- (8)
Given that Y}, =Y, and X}, | = X;, _1, we can write:
Vi, = [1(Xipo1) +uj,,, st B, | Xoa] = fH(Xip-1) 9)

We then define an alternative estimator of the individual-specific shock effect «y;, that is,
each unit’s Conditional Average Treatment Estimate (CATE) estimate (Salditt et al., 2024),
as the difference between the predicted outcome under the shock in ¢, and the predicted
counterfactual outcome in the absence of the shock for the same firm:

A 0
O‘i—Yz‘,ts Y;ts

(10)

where Ylt = f! (Xito—1) = Yig, — gzlts zts

We refer to the model used to predict Y, (and the predictions f/;t themselves) as the
Shock Aware Machine (SAM). The term “Shock Aware” emphasizes that this model exploits
information from the observed shock scenario. Importantly, SAM predictions are expressed in
the same metric as the counterfactual predictions, which are produced by the SUM, allowing
them to be directly comparable.’’ In our application, the SAM expresses the outcome in

2020 of exporters operating the foreign market in 2019 as a function of their characteristics

ONotice that with éui, we are comparing a probability (counterfactual) with a binary value (observed
outcome), while with &;, we are comparing two estimated probabilities.
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in 2019 and the information about governments’ shock-related stringency measures all over
the world coming from Hale et al. (2020).!" Similarly to the procedure followed to select
the best-performing SUM, we rely on a 5-fold cross-validation strategy to obtain a 2020
prediction for each firm that exported in 2019. We randomly group the 2019 exporters into
five equally sized subsets and we predict the 2020 outcomes of the firms contained in one
subset by using the information of firms contained in the remaining four subsets. In other
words, we train the models on a random 80% of the data and test them on the remaining
20% and we repeat the process five times for each different 20% subset, thus obtaining a
2020 prediction for each 2019 exporter.

The ATE estimator and CATE, estimator based on &; are:

1 _ 1
@:NZ@, dzzﬁz‘ &, (11)

As shown below, &, is an unbiased estimator of the CATE, if, in the relevant subsample,
the mean of the expected prediction-error difference between SAM and SUM, - >, E[E}, —

01 ; :
&), is zero:

E[éz} - Ni Z E[4;]

?ieC,

1
- N. Z E[Yi:ts - Yi?ts - (gil,ts - gz'o,ts) - (uz'l,ts + U?,tsﬂ

?iec, (12)
1 1 1
N Z YN Z E[gil,ts - gi(?ts] TN Z E[uz{ts - u?,ts] :
7 ieC. % e, % e,
CATE. — 0 by (i), (if) and (8)

Similarly, & is an unbiased estimator of the ATE if + SV E[gl, — &) ]1=0, and & is
an unbiased estimator of the unit i’s CATE if E[g}, — &P, ] =0.

Given the definitions of SAM and SUM, to simplify the reasoning in the following, we
refer to Eqgs. (5) and (10), respectively as

&; =Y =Ygy =Y — SUM. (13)
&; =Ysan — Youn = SAM — SUM. (14)

The conditions behind these identification results are not directly testable as they are
expressed in terms of the expected values of the prediction error Sgts that is a function of the
unobservable counterfactual Yzot Table 1 distinguishes the five different scenarios concerning
the expected values of 5&5 and 81-17% that are relevant in determining whether applying the
statistic T to Y — SUM and SAM — SUM is able to recover the corresponding treatment

1See subsection 3.1. We do not introduce these variables explicitly as an argument of f!() to simplify
notation.
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effect estimand (e.g., whether averaging the estimated individual treatment effects would

recover the average treatment effect).

Table 1: Identification of generic functions of the individual treatment effects, T, according to the
corresponding value taken by the prediction errors

T(SAM — SUM) T(Y — SUM)

T[E[S}t]] # 0 and T[E[Sgts]] =0 X v
T[E[gllt]] = T[E[Egts]] =0 v v
T[E[E!, ]] =0 and T[E[EY, ] #0 X X
T(E(E, ] = T[EE,]] # 0 v x
T[E(E,,]] # T[EE,,]] # 0 x X

The estimators based on Y-SUM identify the population parameters when T[E[£}5]] =
0. The estimators based on SAM-SUM are unbiased whenever T[E[E] 5] = T[E[E509]]-
Under the assumption that the strength of the COVID-19 effect on export propensity was at
most very limited during the first quarter of 2020, we will use the out-of-sample prediction
errors for the first quarter of 2020 as a proxy for the unobservable behavior of £y, in the
following months. Moreover, as explained in detail in section 4.2, the distribution of the
estimated treatment effects during the first quarter will be used to check the credibility of the
above assumptions for the set of all 2019 exporters and for different subsets of 2019 exporters
defined according to their characteristics X 2019 or to their position in the distribution of
such effects.
The inference is performed using bootstrap. Specifically, bootstrap samples are drawn by
resampling the training and testing datasets with replacement, preserving their original
sizes and proportions, and repeating this process 100 times per month. For each bootstrap
iteration, out-of-sample predictions are generated using each ML model trained on the
resampled datasets, with hyperparameters fixed at the values previously optimized via
cross-validation. Once the predictions are made, the SUM and SAM are calculated as
described above for each bootstrap sample within each month. To construct confidence
intervals, the predictions across all bootstrap replicates are aggregated, and the empirical
distribution of the resulting estimates is used to calculate the percentile-based bounds for
the 95% confidence interval, thus capturing the uncertainty in the predicted effects due to
sampling variability. However, as a note of caution, we remark that the literature on causal
ML has shown that estimators based on ML estimation of the conditional expectation function
of potential outcomes, such as Sé and @&, inherit the slow convergence rates of the ML method
on which they are based and are not asymptotically normal, making inference problematic.
The problem with these estimators is that the moment conditions on which they are based

are not Neyman-orthogonal. To do a robustness check for the average treatment effects,
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we use the AIPW-Double ML estimator (with 5-fold cross-fitting and nuisance parameters
estimated with Generalized Random Forest) that is consistent and asymptotically normal for
ATT = ATE = E(Y,! -Y?) and AT Eyy 4,1y = E(Y{lts7t5_1}—Y§S_17ts}) (Chernozhukov et al.,
2018), in which the average potential outcomes are expressed with a moment condition which

is Neyman Orthogonal. ATT = ATE = F (V! = Y)?) is the parameter we aim to estimate

with & and &. ATEy, 1,1y = E(Y{lts7ts_1} —Y{gs,ts_l}) is the average treatment effect obtained
considering the cohorts of treated and control firms together as a unique sample. To identify

ATFEy, 4,—1y, we have to make the following additional assumptions: Yt1 AL Dy, | Xy, s
EY, | Xe, ] =B, | Xi. o] Yo, = Y5 P(Drge-1y = UXp—10-2y) = e(Xpp—1,0,-2y) >
0. Indeed, these assumptions are needed to identify the Average Treatment Effect on the
Untreated (ATU), which is defined as ATU = ATE,,_, = E(Y,;'  —Y? ), because the
ATEy, 14y = ATU x (1 —=0(-))+ ATT * (0(-)) where o(-) represents the share of the treated

population. Let’s define the following pseudo-outcome'?
Dttty (Vo) =Yoo 1y) - (0= D) Vit oy = Yoo 1)
e(Xqt,—1,6,—2}) 1— (X, -1,6,-2})

ATE _ vl -0
(totam1y = Ytot—1y — Yitopo—13 T

(15)

outcome predictions - -
weighted residuals

The AIPW-Double ML estimator (where Y, Y and é are estimates of the nuisance
parameters obtained with ML by cross-fitting) is the average of these pseudo-outcomes and
identifies the AT Eyy 413"

Finally, following the nomenclature introduced by Kiinzel et al. (2019), we note that our
estimator &; is referred to in the literature as the T-learner. In particular, we are applying a
T-Learner to the group of treated units. Although the T-learner is a consistent estimator
for CATE, it may have shortcomings in finite samples due to a phenomenon known as
reqularization bias. This issue arises because the outcome models for treated and control
units, denoted f; () and fo(x), are estimated separately and may be subject to different
degrees of regularization. Such discrepancies are particularly pronounced when the sample
sizes for the two groups differ substantially, and the machine learning methods used employ
regularization schemes that are sensitive to sample size. In this case, the model trained on
the smaller group may be oversmoothed, potentially introducing artificial variation into the
estimated treatment effect.

A second concern relates to regularization-induced confounding, which may occur when
the covariate distributions of treated and control units are not well aligned. Under such
circumstances, the models f! () and fo(x) may be effectively trained on disjoint regions of

the covariate space. Consequently, their difference could reflect underlying distributional

753
1

12For notational convenience, the subscript is omitted in the following expression.

13The procedure consists of the following steps: (a) randomly partition the data into K equally sized
folds; (b) for each fold k, leave it out and use the remaining K — 1 folds to estimate the nuisance functions
wld,z) =E[Y; | D; =d, X; = z] and e4(x); (c) predict the nuisance parameters on the left-out fold &k using
the estimated models, yielding cross-fitted values i~%(d,z) and é;*(z); and (d) repeat steps (a)-(c) so
that each fold serves once as the validation set (Knaus, 2022). This cross-fitting approach ensures that no
observation is used to predict its own nuisance parameters, thereby reducing overfitting and guaranteeing the
validity of inference. These cross-fitted estimates are subsequently used to compute the pseudo-outcomes.
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shifts rather than true treatment effect heterogeneity. This issue is often associated with
settings where the estimated outcome models correspond to regions with substantially
different values of the propensity score—for example, where fl(x) is learned predominantly
in areas with high propensity scores and fo (x) in areas with low propensity scores. Since
the T-learner does not explicitly adjust for the propensity score or reweight observations
to balance treatment groups, it may be more susceptible to this type of bias compared to
alternative estimators considering also the distribution of the propensity score, such as the
DR-learner introduced in Kennedy et al. (2020) (that approximate the £ Dﬁ?ﬂ%ts}]X | as a
generic ML problem; the reader is referred to the Appendix for further details).

However, in our application, these concerns are likely to be minimal. First, we leverage
a large sample size, which mitigates the risk of over-regularization. Moreover, we employ
a range of ML methods with varying levels of regularization intensity and obtain highly
consistent results across estimators. Second, the distribution of covariates is balanced
between treated and control units as shown by the estimated propensity score which is nearly
identical across groups (see Figure Appx.13). This implies that both fi(z) and fo(x) are
estimated over comparable regions of the covariate space, thereby limiting the potential for
regularization-induced confounding. Third, in practice (see Table 6, Table 7, Table 8 and
the monthly comparison of the distribution of estimated CATE in the Online Appendix),
the CATE results obtained for the T-Learner are very similar to those obtained with the

other meta-learners using the propensity score and with Generalized Random Forest.

2.2 Treatment effect heterogeneity analysis

As a further step, we perform the heterogeneity analysis by adapting the Sorted Partial
Effect (SPE) method introduced in Chernozhukov et al. (2018). Formally, the SPEs are
defined as percentiles of the «;, the individual Treatment Effects (TE), and can supply a
more detailed summary of the distribution of TE than the Average Treatment Effects (ATE),

commonly employed in econometric analysis. The SPEs are defined as

o (u) = u™

— percentile of a;. (16)
In our setting, o*(u) is a function of X;, 1 defined over its distribution in the population of
ts — 1 exporters.

The SPEs are used to do a classification analysis (CA) that allocates the t; — 1 exporters
into two groups, the most and the least affected by the shock, according to whether their «
are lower than o*(25) or greater than a*(75), respectively. Notice that, since the shock effect
is negative, we have defined as the most (negative) affected units those whose « lie in the
left tail of the sorted distribution of treatment effects. Finally, to study the determinants of
treatment effect heterogeneity, we focus on the difference in means (CADif f) of the X;, 4

across the most and least affected groups. In the estimation, we use sample analogues of
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a*(u) and CADif f. We calculate standard errors of a*(u) and CADif f by bootstrapping
the entire estimation process, starting from the initial «; estimation step.

Starting from B bootstrap replications of all the estimation steps (including the prediction
stage), we calculate the CADif f B times. To determine the significance of the CADif f we

perform a two-tailed test. The p-values are constructed as follows:

2 -min{Pr(S > t|Hy), Pr(S < t|Hy)}

CADifforiginal

o

being t the observed t test statistic, ¢t = , drawn from the unknown distribution
S. & represents the standard deviation of the bootstrapped CAD:if f. To adjust the p-values
and obtain the joint p-values taking into account that we are testing hypotheses jointly on
many covariates, we reproduce the “single-step” method employed by Chernozhukov et al.
(2018) to control for the family-wise error rate.'*

The application of the SPE technique presents several advantages in our setting. First,
the estimated a*(u)s provide a summary of the distribution of the estimated treatment effects
and, therefore, of treatment effect heterogeneity. Second, the CA identifies the subgroup
of the population that is more affected by the treatment and the CADif f studies how the
heterogeneity of the treatment effect depends on observables without imposing (additional)
functional form assumptions. Third, the CADif f step provides p-value adjustments to
account for the joint testing of all the covariates that are considered to detect if observables
are associated with treatment effect heterogeneity. In other words, the main idea is to
test the null hypothesis that there is no difference between the value of the covariates in
the most and least affected group, also taking into account that we perform simultaneous
inference on several variables. Simultaneous inference on multiple covariates in the CA

and CADiff naturally raises the problem of multiple testing. To address this, we employ

141n the following is described the single-step algorithm. We will indicate the bootstrap version of a
variable, v, as ¥ and its estimated version (on the original data) as 0. Moreover, A(xz)~* will denote the first
moment for the feature x of interest in the least affected group including the observational units i such that
a; < a*(u). Similarly, A(x)™ defines the first moment for the variable x of interest in the most affected
group including the observational units ¢ such that «; > o*(1 — u). Since we do not observe « directly,
the mentioned quantities are estimated. According to the above convention, the estimated value of A(x)™*
(A(x)t™) will be A(z)~* (A(z)**) indicating the first moment for the variable x of interest for firms i such
that &; > &*(u) (&; < &*(1 —w)). In the present paper u = 25, however, we will maintain the more general
u notation for the sake of consistency with Section 4.

The single-step algorithm proceeds as follows: 1) for each variable z € X;, compute A(z)** and A(z)~*,
bootstrap draws of f\(x)*" and /A\(a:)*“ respectively. We want to test the null hypothesis, Hy, that A¥(z) = 0,
for A¥(z) = [A(z)~%, A(z)*"]. 2) Construct a bootstrap draw of the distribution of (At%(x) — A="(x)),
Z% (z). The latter is obtained by exploiting the bootstrap version of AT%(z) and A~%(z), namely: Zo () =
V(AU (z) — A (z)) where A%(z) = [A(z) %, A(x)T] (similarly, A%(z) = [A(z)~*, A(z)™]). 3) Repeat steps
9075 (%) — 40 55 (@)
~ 20.75%0.25

q, (z) the p'" sample quantile of Z () and 2, the p'* quantile of a standard normal distribution. 5) Use
the latter to construct the test statistic 7(X;) = supzex, | Zoo ()| - |S%(2)| /2. A p-value for the null Hy
that A(z) = 0 for all 2 € X, of the realization of the estimated statistic, sup,cx, |A"(z)| - |S(z)| /2 = s, is

1) and 2) B times; 4) compute a bootstrap estimator of the variance of Z,, as 3% (x) = being

Bl
S (@)

given by the average number of times that 7(X}) is greater than s, where s = . The 7 indicates simply

that the ﬁff has been projected to the bootstrap dimension.
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the single-step joint inference procedure developed by Chernozhukov et al. (2018), which
controls the family-wise error rate (FWER) via bootstrap-based p-values. This procedure
ensures that the joint probability of incorrectly rejecting any true null hypothesis across
all covariates remains bounded, thereby maintaining the overall validity of inference across
the full set of comparisons. Technically, the validity of the single-step correction relies
on the fact that the sorted effects and their induced classification structure are smooth
functionals of the data-generating process. In particular, Chernozhukov et al. (2018) show
that the sorting and classification operators are Hadamard differentiable, which allows the
use of the functional delta method to derive the large-sample distribution of the estimated
effects and their differences. This property justifies the application of bootstrap methods for
obtaining joint confidence sets and p-values, even in the presence of nonlinear models and
complex sorting rules. In our context, this implies that differences between covariates across
classification groups are not tested in isolation, but rather as a joint hypothesis — thereby

appropriately correcting for the multiplicity of comparisons and preserving valid inference.

Our inference procedure, in particular, is based on bootstrap resampling combined with
Sorted Effects and CA, as developed by Chernozhukov et al. (2018) and adapted to settings
without a contemporaneous control group. Specifically, we implement a nonparametric
empirical bootstrap in which each sample is drawn with replacement from the original data
using multinomial weights wy,...,w, with equal probability 1/n'®  allows us to capture
the sampling variability of the sorted effects and their induced classification structure.
We employ B = 100 bootstrap replications, selected to balance computational feasibility
with sufficient precision, especially given that bootstrapping is nested within a multi-stage
machine learning framework involving model fitting and effect estimation across multiple
folds and time splits. As anticipated, the procedure serves two core inferential objectives:
constructing confidence intervals for CA and CADiff estimates and computing joint p-values
to assess the statistical significance of heterogeneous effects across multiple covariates. In
our setting, where the counterfactuals are generated from predictive models rather than
observed untreated outcomes, a further layer of uncertainty is introduced. To accommodate
this, the bootstrap replicates the entire estimation pipeline —model selection, prediction,
and classification —treating the Partial Effects (PE) as the true reference under the null
hypothesis. All classification and treatment effect heterogeneity measures are re-estimated
in each bootstrap sample. Finally, the entire inference pipeline is integrated with k-fold

cross-validation, preserving stability and validity in the estimation of sorted effects.

2.3 Comparison with Generic ML

Our approach in estimating the individual treatment effect and in performing the heterogeneity

analysis is similar to the generic ML technique presented in Chernozhukov et al. (2023),

15The reader is referred to Algorithm 2.2 in our supplemental material available upon request.
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which is adapted to a situation in which there is no available (contemporaneous) control
group (i.e., it is difficult to identify ex-ante firms that are not affected by the shock).

We show that our empirical strategy is built on the same pillars as Chernozhukov et al.
(2023), but applies them to a different setting. To simplify the exposition, we refer to Table
2 which provides a simplified representation of our empirical setting.

Chernozhukov et al. (2023) deal with an experimental empirical setting in which one can
easily separate a treated group from a control group. In order to study the heterogeneity of
the average treatment effect, the first step of Chernozhukov et al. (2023) is to split randomly
the sample under analysis in an auxiliary (A) and a main sample (M) of approximately
the same size. Then, they employ ML techniques to learn in A the function approximating
the potential outcomes in the treatment and non-treatment scenarios, while M is used to
make inferences on the key features of treatment effect heterogeneity. In other words, they
estimate the function describing the outcome in case of treatment (no treatment) on the
subset of treated (non-treated) firms contained in A. These two estimated functions are
used to impute the two potential outcomes for each firm contained in the M sample (the
difference represents the estimated individual treatment effects) and study the treatment
effect heterogeneity estimated for these firms by using, inter alia, the Sorted Effects method
(Chernozhukov et al., 2018). This procedure is designed in this way to avoid overfitting
(i.e., doing learning and prediction using the same sample), and, starting from the random
splitting, it is repeated many times in order to obtain many distributions of estimated

treatment effects to which the Sorted Effects method is applied.
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Table 2: A simplified representation of our empirical setting in which we compare the methods
used in the present paper to those described in Chernozhukov et al. (2023).

As an example, in Table 2, we represent 20 exporting firms observed in 2018 or in 2019.
In the context of our setting, the strategy of Chernozhukov et al. (2018) would imply that
the 2019 sample, for which we are interested in estimating the average treatment effect,
should be divided in two, as shown in the last column of Table 2. However, in the COVID-19
scenario, one cannot easily separate treated and control units because COVID-19 imposes
a (at least indirect) treatment over all units, hence preventing the possibility of discerning
between treated and controls.'® Moreover, with respect to Chernozhukov et al. (2023), in
our empirical setting, we do not have the necessity to predict the outcome of controls in the
case of “no treatment” because we are not interested in estimating the COVID-19 effect
on 2018 exporters. Therefore, we do not have to split the controls observed in 2018 in two
halves to avoid overfitting and this enables us to reconstruct a counterfactual outcome of no
treatment for each 2019 exporter without incurring in overfitting problems. Therefore, in
this paper for the SUM we use as an auxiliary sample all the Colombian exporters observed
in 2018 (A) and as the main sample (M) all the Colombian exporters observed in 2019. For
the SAM, we perform instead a K-Fold splitting in which, iteratively we select 80% of the
firms in 2019-2020 as being part of A and the remaining 20% as being part of M. This is
shown in the column “Our Setting (SAM)” of Table 2, where different A (and, accordingly

6Furthermore, even if we assume that during the first three months of the year there was no COVID-19
effect going on, and therefore we categorize as non-treated (treated) firms operating in those months (in the
other remaining months), and we use the non treated firms in the auxiliary sample to learn, it would be
problematic to use the learning outcome in case of no treatment during the first three months to predict the
outcome in case of no treatment for the treated firms that are those in the last 8 months because of the strong
seasonality effects we have. So the outcome during the first three months in case of no treatment would be
very different from the outcome of the last months in case of no treatment just because of seasonality effects.
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different M) groups are selected according to the different colors of the dashed circles. In
this way we avoid overfitting problems and, at the same time, we exploit all the available
data by being able to compare the predicted probabilities to export in the COVID-19 with
those in the non-COVID-19 scenario for all the observed 2019 exporters.

Lemma D.1 of Chernozhukov et al. (2023) provides a theoretical foundation for conducting
valid inference on key features of CATE. This lemma relies on several underlying assumptions.
Most notably, Chernozhukov et al. (2023) assume a randomized controlled trial (RCT)
setting. In our case, this assumption is not overly restrictive, as the estimated distribution
of the propensity score in our sample lies within a narrow range of 0.498 to 0.511, closely
approximating random assignment according to the distribution of observables (see Figure
Appx.13 in Appendix H). Another possible limitation of our setting is the overlap of firms
between t—1 and ¢, given by the panel nature of the dataset, which could introduce overfitting
problems in our strategy. The original sample splitting procedure of Chernozhukov et al.
(2023) instead is not affected by this problem, using different sets of firms in the A and M
samples.

The SPE (Chernozhukov et al., 2018) offers formal inference guarantees. In particular,
the bootstrap-based confidence bands are valid under mild regularity conditions. We verify
these conditions in our setting following the guidance in Chernozhukov et al. (2018), which
centers on the smoothness and non-degeneracy of the estimated treatment effects function, as
shown in the Online Appendix. However, the SPE is a method originally designed for doing
inference on CATEs obtained with parametric and semiparametric estimators, and not for
machine learners. In Chernozhukov et al. (2023), Group Average Treatment Effects (GATES),
which have been designed for studying CATE estimates obtained with ML methods, have the
same role as SPE, as detailed in section 4.5. The main difference between SPE and GATES
is that the former summarises the distribution of CATEs by estimating its percentiles, while
the latter divides the support of estimated CATEs in bins by typically using quartiles or
quintiles and estimates averages of the CATEs within these bins. Finally, the classification
analysis (CA) employed in Chernozhukov et al. (2018) and in this paper is the same as the
Classification Analysis (CLAN) presented in Chernozhukov et al. (2023).

Therefore, as a robustness check, in section 4.5 we will follow the procedure outlined
by Chernozhukov et al. (2024) to apply the Chernozhukov et al. (2023)’s methodology to a
research design characterized by the Conditional Independence Assumption and we compare
the results obtained with those conveyed by SPE.

3 Data and Dependent Variable

This study focuses on the social and economic disruption caused by the COVID-19 pandemic
and its effect on Colombian exporters. This global health crisis triggered by the COVID-19

pandemic served as a notable example of a large-scale economic shock that profoundly
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impacted global trade, with the dynamics of exporters in Colombia being significantly
affected. Applying our ML strategy to data collected from Colombian exporting companies
during this period can provide key insights into how companies adapt and survive in the face
of such widespread disruption. This provides an understanding of market resilience and firm
survival dynamics in the context of global trade shocks. Therefore, our dependent variable
Y;; is a dummy variable that takes the value 1 if a firm ¢ is an exporter at time ¢ —given
that it was an exporter in ¢t — 1— and the value 0 if the firm is not exporting at time ¢.!
By grounding our research on a specific case study, we maintain its relevance to the specific
scenario while preserving its potential for broader applications.

We use monthly export transaction data reported at the Colombian Customs Office
(Direccién de Impuestos y Aduanas Nacionales, DIAN) for 2018, 2019, and 2020. For
each transaction, we consider the exporter ID as the firm identifier; the date; a 10-digit
Harmonized System code (HS) characterizing the product; the product origin within Colombia
(department level); the means of transportation of the shipment; the country of destination;
and, the free on board value of the export transaction in US dollars. This data set also
contains information about the value and origin country from which a given exporter imports.
We remove all transactions related to re-exports of products elaborated in other countries.
As a result, we ended up with 386,132 customs reports in 2018 (7 741 firms), 402,140 in 2019
(7831 firms), and 365,626 in 2020 (7518 firms).

3.1 Control Variables

The selection of control variables is based on the determinants of firm entry and exit in
foreign trade (see, e.g., Albornoz et al., 2012; Arkolakis et al., 2021). We classify products at
the six-digit level of the HS code. We consider different features of exporters according to
their monthly exports: the total export (and import) value, the number of products (N P),
the number of export destinations (N D), the number of import origin countries (NO), the
Herfindahl-Hirschman indexes at the product level (HH,) and the destination level (HHy),
and a set of dummies for the destinations and origin countries and continents. We create a set
of dummies according to the Colombian department from which the product comes, a set of
dummies for the means of transportation used, and a set of dummies classifying the product
HS-chapter and HS-section. Moreover, we build two sets of dummy variables indicating
whether a firm has experience exporting in specific destinations and product sectors. We
also account for the accumulated exporting (importing) experience by summing up the total
value exported (imported) during the last twelve months. Furthermore, we create four size
dummies classifying firms according to the quartiles of the firm-level distribution of the total
monthly log-value of exports.

To measure the COVID-19 demand and supply shock, we use the information on

government contention measures coming from Hale et al. (2020), which consists of four

1"More precisely, Y; ; = 0 if a firm is no longer active or is active but not exporting at time ¢.
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indexes (ranging from 0 to 100) representing the strength of the measures taken by countries
to contain the COVID-19 outbreak. The authors provide an economic index summarizing
economic policies (F), a health index summarizing health policies (H), a government index
describing the strictness of ‘lockdown style’ policies (G), and an overall government response
index called stringency index (S). The value of these indexes ranges from 0 to 100.'® We
build two variables at the firm level for each of the four indexes, one at the export and one
at the import side, by taking a weighted average of the country-level scores according to the
proportion of the total monthly value of exports (imports) that a firm ships (source) in each
country in 2019. We call these firm-level indexes for a firm ¢ “Containment Index; ; ,”, with
j={E,H,G,S} and z = {Imp, Exp}."?

Our final data set is composed of 1,975 covariates. They are presented in detail in Table

Appx.1 of Appendix B.

4 Results

4.1 Selection of the machine learning algorithm

We evaluate and contrast the outcomes of several ML techniques against a benchmark logistic
regression, aiming to identify the model with superior prediction performance, which is
crucial for the consistency of our T-Learner estimator. The out-of-sample predictive efficacy
of our empirical models is crucial, given our goal to reconstruct an unobserved counterfactual.
The complexity of this task arises from its high dimensionality and complex interdependencies
between firms and products from various sectors and export destinations. While an approach
focusing on in-sample prediction accuracy might overfit, ML techniques optimally balance
the bias-variance trade-off for out-of-sample predictions.?”

We examine four distinct models: Logit, Logit-LASSO, Logit-Ridge, and Random Forest
(RF). The traditional choice for binary dependent variables, Logit, serves as our baseline. Even
though literature often shows ML techniques outperforming traditional models with numerous
predictors, we have included Logit results for comparison. The main idea of Logit-LASSO is
to mitigate overfitting by introducing a penalty term in the Logit log-likelihood function
that forces the parameters associated with the less relevant predictors to be exactly zero.
On the other hand, Logit-Ridge reduces the coefficients of less significant predictors without
eliminating any of them, proving especially useful when many variables play an important
role. The main idea behind Random Forest is the wisdom of crowds because it combines

the predictions of many uncorrelated models (the trees) obtained by randomly re-sampling

18These indexes are released daily. We average this information at the monthly level.

19The value of the Containment Stringency Index Import for firms that are not importing corresponds
to the value of the Containment Stringency Index for Colombia (as firms are sourcing all their inputs
domestically).

20Hyperparameter tuning through cross-validation or other theory-driven methods is often critical in
order to avoid overfitting.
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observations and explanatory variables.?’ For Logit, Logit-Ridge, and Logit-LASSO models
we include interactions between the size of the company and some of the main product
characteristics, industry, sector, means of transportation as well as with destination country
dummies. Notice that Random Forest uses the variables sequentially and, therefore, with
a large enough number of trees, it is not necessary to explicitly introduce interactions as
explanatory variables, i.e., the model automatically takes into account the interactions that
are useful to accurately predict the outcome.?” The prediction analysis is repeated for all
months between January-December 2020. In Appendix E we perform a series of robustness
tests for alternative ML methods (XGBoost and SVM) and panel cross-validation. Although
panel cross-validation is more complicated, the results are largely consistent with those in
the main text.

Table 3 shows the goodness of fit of the model’s predictions using two widely used
classification metrics: Root Mean Square Error (RMSE) and the Area Under the Receiver
Operating Curve (AUC). The best value for the RMSE is 0, which indicates optimal accuracy
with no fixed upper limit. The AUC reaches a value of 0.5 for random predictions and 1 when
the outcomes are classified without error. Our preferred metric is the RMSE. The reason
is twofold. First, our analysis focuses on estimating predicted probabilities of exporting,
rather than producing binary classifications. The key object of interest is the probability of
continuing to export in the future, conditional on covariates and treatment status, which is
central to counterfactual analysis. In this setting, thresholding probabilities to assign binary
labels (e.g., classifying 0.51 as 1 and 0.49 as 0) can lead to substantial misrepresentation of
the underlying uncertainty, particularly in marginal cases.

Second, model performance in our context is evaluated based on how well the predicted
probabilities approximate the true (unobserved) probabilities.

The AUC-ROC is provided as an alternative threshold-independent measure of the quality
of the fit. The results are consistent when using different measures of goodness of fit.

The table’s upper part displays the accuracy of predictions for the probability of exporting
in 2019 based on 2018 exporter data, serving as an out-of-sample performance benchmark
in a pre-COVID-19 context using cross-validation. Here, the Logit-LASSO and RF models
arise as top performers. The table’s middle section also shows the accuracy of models
estimated using the exporters’ characteristics in 2018 to explain their observed outcomes
in 2019; however, these models are now tested using the set of exporters of 2019 and their
observed outcomes in 2020. If the functions f?, which represent the relationship between the

explanatory variables and the outcome without the pandemic, are sufficiently similar for the

2INote that it is important to optimize (tune) the hyperparameters of the models for an accurate prediction.
These are the hyperparameters we tuned in our models: Ridge; [10~%,10%], best 10°; Logit-LASSO; [10~%,102]
best 10'; RF, following Probst et al. (2019); n estimators: [100, 200, 500], best 500; max features: [‘sqrt’,
‘log2’, None], best sqrt; max depth: [5,7,10], best 7; max leaf nodes: [3,6], best 6; min samples split: [2,§],
best 2.

22For more information about all the features included to build the SUM and SAM see Table Appx.1 in
Online Appendix B.
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year before the pandemic and for the year 2020 (5,0 and f9,; see assumption (ii)), we
expect the accuracy of fgmg to be similar in the first three months of 2020 (when there is
likely no relevant COVID-19 effect in Colombia) as in the same months of 2019. Indeed, as
expected, the accuracy of Logit-LASSO and RF in January, February and March remains
unchanged compared to the accuracy found in the upper part of the table. However, in the
middle part of the tables, a decrease in accuracy can be observed after April, highlighting
the challenges of a model not trained on COVID-19 data when forecasting in an environment
affected by COVID-19.

The models in the lower part of Table 3 are trained and tested with the universe of
exporters in 2019 and their observed outcomes in 2020. We use these models to create the
SAM forecasts. The accuracy of the predictions is very similar to that obtained with the
SUM for 2019 and for the first three months of 2020. Our analysis is crucial to achieve
accurate predictions because the unbiasedness of our treatment effect estimators depends on
the quality of the (counterfactual) prediction accuracy. Both the SUM and the SAM show
an acceptable level of accuracy when predictions are made with Logit-LASSO and Random

Forest.
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Table 3: Goodness of Fit for SUM and SAM in 2018/19 and 2019/20

RMSE AUC

Logit-LASSO Logit-Ridge Random Forest Logit Logit-LASSO Logit-Ridge Random Forest Logit

Goodness of Fit for SUM in 2018/19

Jan 0.40 0.45 0.41 0.64 0.73 0.53 0.73 0.59
Feb 0.41 0.45 0.41 0.64 0.70 0.50 0.71 0.58
Mar 0.41 0.44 0.41 0.65 0.70 0.56 0.71 0.57
Apr 0.40 0.43 0.40 0.63 0.73 0.59 0.73 0.60
May 0.40 0.44 0.41 0.64 0.72 0.52 0.71 0.59
Jun 0.40 0.45 0.41 0.64 0.71 0.50 0.72 0.59
Jul 0.40 0.45 0.40 0.66 0.73 0.50 0.73 0.55
Aug 0.41 0.45 0.40 0.64 0.70 0.51 0.72 0.58
Sep 0.41 0.45 0.40 0.64 0.72 0.50 0.71 0.58
Oct 0.40 0.44 0.41 0.64 0.73 0.58 0.74 0.58
Nov 0.41 0.45 0.41 0.64 0.71 0.51 0.72 0.57
Dec 0.41 0.45 0.41 0.64 0.70 0.50 0.71 0.58

Goodness of Fit for SUM in 2019/20

Jan 0.41 0.45 0.41 0.75 0.72 0.53 0.72 0.49
Feb 0.41 0.45 0.42 0.64 0.69 0.50 0.69 0.56
Mar 0.40 0.44 0.41 0.63 0.72 0.54 0.73 0.59
Apr 0.48 0.50 0.49 0.70 0.67 0.56 0.66 0.51
May 0.46 0.48 0.46 0.63 0.69 0.51 0.69 0.60
Jun 0.43 0.47 0.44 0.63 0.68 0.50 0.68 0.59
Jul 0.42 0.46 0.43 0.63 0.70 0.50 0.69 0.59
Aug 0.42 0.45 0.43 0.63 0.68 0.51 0.69 0.58
Sep 0.42 0.45 0.42 0.63 0.69 0.50 0.70 0.59
Oct 0.42 0.45 0.43 0.63 0.71 0.59 0.70 0.60
Nov 0.41 0.45 0.41 0.63 0.71 0.51 0.71 0.59
Dec 0.42 0.46 0.42 0.63 0.69 0.50 0.69 0.58

Goodness of Fit for SAM in 2019/20

Jan 0.41 0.45 0.41 0.71 0.73 0.58 0.74 0.50
Feb 0.41 0.46 0.42 0.70 0.70 0.50 0.70 0.49
Mar 0.40 0.46 0.40 0.71 0.73 0.50 0.73 0.50
Apr 0.42 0.47 0.42 0.69 0.74 0.66 0.73 0.52
May 0.41 0.46 0.41 0.71 0.76 0.74 0.77 0.50
Jun 0.42 0.46 0.42 0.72 0.73 0.69 0.73 0.48
Jul 0.41 0.45 0.42 0.69 0.73 0.63 0.72 0.51
Aug 0.41 0.46 0.42 0.69 0.72 0.50 0.72 0.53
Sep 0.42 0.47 0.42 0.67 0.71 0.50 0.70 0.55
Oct 0.42 0.46 0.42 0.70 0.72 0.50 0.71 0.52
Nov 0.41 0.45 0.41 0.71 0.72 0.52 0.72 0.49
Dec 0.41 0.45 0.42 0.70 0.71 0.51 0.70 0.51

Notes: Results are obtained based on a 5-fold cross-validation strategy. RMSE and AUC are averaged across
folds.
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4.2 Evaluation of the COVID-19 effect

Both Logit-LASSO and Random Forest reach high accuracy levels in the export status
prediction. As explained in section 2, the predicted probabilities are used to estimate the
average monthly effect of the COVID-19 shock as the (monthly) average of &; (the difference
between the firm-level probabilities of success predicted by the SUM and the SAM.), a.

They are presented in Figure 1.
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Figure 1: Average Individual Treatment Effect, by months, comparing Logit-LASSO and RF.
Standard errors were obtained with 100 bootstrap replications. Confidence intervals for a 5%

significance level.

Given the presumption that firms suffered a negligible COVID-19 shock impact during the
initial three months of 2020, the treatment effect estimates for this period can be viewed as a
placebo test, reminiscent of the in-time placebo test routinely employed in Synthetic Control
Methods (Abadie et al., 2015). Detecting a significant COVID-19 effect in the months
preceding the actual economic shock would suggest that our model mechanically estimates
a COVID-19 effect even in the absence of the stated shock. We conduct these placebo
studies also conditioning on exogenous firms’ characteristics observed in 2019 by estimating

COVID-19 effects for selected subsamples of firms according to such characteristics. We
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interpret these additional placebo studies as a robustness check on our results on treatment
effect heterogeneity.

As shown in Figure 1, the probabilities obtained from the SUM and the SAM are
almost identical on average for January, February, and March. This result is reassuring
since only from March 25, 2020, the Colombian government implemented a complete and
mandatory lockdown.?® More in general, we can conclude that our identification strategy is
not mechanically recovering COVID-19 effects for a period with low incidence in Colombia
and in the rest of the world. We find that the peak of the COVID-19 effect is in April 2020,
when we estimate an average difference between the predicted probabilities of exporting of
nearly 20 percentage points. In the following months, the estimated average effect declines
with time.

The results indicate that both Logit-LASSO and RF models yield comparable performances.?*
Given their good performance and considering that Logit models are frequently used in
similar contexts, we opt for Logit-LASSO. It aligns with the conventional approaches and
offers greater interpretability as an extension of the traditional model.?

The results obtained using the ATIPW-Double ML estimator (with 5-fold cross-fitting and
nuisance parameters estimated with Generalized Random Forest), which are shown in Figure
Appx.12 in the Appendix, are equivalent. It is also interesting to notice that estimated ATT
and AT Ey, ; 1y are practically the same. This happens because the distribution of the
explanatory variables is exactly equal between the treated and the control group, as it is
shown in Figure Appx.13 that reports the results of the estimated propensity score for the
two groups.

Figure 2 reports the estimated CATE, by industry, that is the Conditional Average
Treatment Effect for those units belonging to different industries. It shows evidence of
substantial variations in the quarterly estimated average individual treatment effect by
industry. On the one hand, during the first, third, and fourth quarters of 2020, there is no
evidence supporting the existence of sectoral heterogeneity in the COVID-19 effect, and the
COVID-19 shock is economically and statistically insignificant. Therefore, concentrating
on the results for the first quarter, we are able to reject the existence of an effect even
within sectors.? On the other hand, during the second quarter of 2020, Colombian exporters
belonging to almost every industry are found to significantly reduce their probability of
surviving in the international markets. This decline is particularly pronounced in industries

such as Textiles, Footwear, and Jewelry. However, industries like Food Preparations and

23See Appendix A for a detailed description of the measures taken in Colombia in the midst of the
COVID-19 crisis.

24This is somewhat expected since in Kiinzel et al. (2019) meta-learners are said to provide better
outcomes with generalizable ML-algorithms that perform well for a large variety of data sets.

25Non-reported results using RF are equivalent and available upon request.

26We have conducted other similar placebo studies conditioning on other variables (e.g., the main
destination of exports, the main origin of imports, via (air, land, sea), industry, exported value, imported
value) and in all the considered subsamples we do not estimate any significant effect of COVID-19.
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Vegetables saw minimal changes in their survival probabilities due to the COVID-19 shock.
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Figure 2: The quarterly mean difference in the predicted probability of success (SAM vs. SUM) by
industry, using the Logit-LASSO predictions. Standard errors were obtained with 100 bootstrap
replications. Confidence intervals for a 5% significance level.

4.3 Heterogeneity of the COVID-19 effect on Colombian exporters

In this section, we investigate the determinant of possible treatment effect heterogeneity.
Figures 3 and 4 show the estimated Sorted Partial Effects (SPE) and Average Partial Effects
(APE), which are obtained as explained in section 2 by month and aggregating all the months,
respectively. The two figures also report the 95% confidence intervals with blue bands for
SPE and black dashed lines for APE.

Significant treatment effect heterogeneity is observed for April and May, with June
showing a milder effect. The statistically significant (negative) estimated values of a*(u) are
primarily confined to the distribution’s left tail. However, from July onwards, the confidence
intervals of the SPEs overlap with those of the APEs, indicating an absence of treatment
effect heterogeneity. Interestingly, in the pre-pandemic months, the SPEs closely aligned with
the APEs (estimated to be zero). This demonstrates that individual placebo treatment effects
are not statistically significant throughout the distribution, not just on average, reinforcing
the robustness of our methodology across the entire distribution of treatment effects.

To identify the determinants of treatment effect heterogeneity, we examine the difference

in means (CADif f) of firm characteristics between the most and least affected groups in
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Figure 3: Annual Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19 on
Colombian firm export’s status. The treatment effect is calculated as a difference between SAM
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

Table 4. These groups are defined by whether their estimated «; is lower than a*(25th) or
greater than o*(75th), respectively. Therefore, we compute the raw difference in the means
of the covariates between the most and the least affected firms by regressing the variables
of interest on a constant and a dummy ¢ = 1{,<a+(25¢n)} for the observations for which
estimated «; < a*(25th) or oy > o*(75th). Then, we also provide the difference in adjusted
means once we have controlled for the firm sector and month of the year. Controlling for
sector and month allows us to perform a ceteris paribus analysis, i.e., to dig into the effects
of COVID-19 within specific sectors and specific months.

Table 4 is divided into 3 columns according to the control variables included in the
regressions: in the first column, we show the unconditional average difference in the firms’
characteristics between the most and least affected firms; in the second column, we control
for the firm sector; and, in the third column, we control for firm sector and month of
observation. The firm characteristics that we consider to explore the sources of COVID-19
treatment effect heterogeneity among Colombian exporters are observed in 2019 (the year
before receiving the treatment). First, we check whether the estimated individual treatment
effect (TE) differs between the firms contained in the two groups by using the TE as the
dependent variable. We then move to firm-sector specific characteristics. In particular, the
first set of firm characteristics that we use as dependent variables are dummies indicating

the industry where the exporters operate.’” We also investigate the CADiff for the means

2TWe aggregate the 22 industries defined in the main analysis as follows. “Agriculture” contains Animals
(01), Vegetables (02), Fats/oils (03), and Prepared Foodstuffs (04). “Chemicals” includes Chemical (06), and
Plastics (07). “Manufacturing” contains Machinery (16), Vehicles (17), and Manufactured (20). “Metals”
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Figure 4: Monthly Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19
on Colombian firm export status. The treatment effect is calculated as a difference between SAM
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

of transportation and the months when firms operate. Moreover, to account for the role
of diversification patterns, we also consider as dependent variables the number of export
destinations (N D), import origins (NO), and products (NP) exported. The weighted
Containment Stringency Index that exporters face when exporting (importing) allows us to
study to what extent treatment effect heterogeneity depends on these firm-specific measures
of exposure to COVID-19 through their activities on international markets. A traditional
continuous-DID strategy would have used these intensity variables as treatment variables,

assuming that any COVID effect would emanate through them. Finally, including the total

aggregates Mineral (05), Cement (13), Jewelries (14), and Metals (15). “Special” includes Precision
Instruments (18), Arms (19), Art (21), and Special (22). “Textile” contains Leather (08), Textile (11), and
Footwear (12). Finally, “Wood” aggregates Wood (09), and Paper (10). See Table Appx.2 in the Online
Appendix for the complete industry names.
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Table 4: Estimated differences in means of the estimated treatment effect and other covariates
between the group of more affected and the group of less affected firms (CADif f) applying the
classification analysis to the SAM — SUM estimates

Outcome variable (1) (2) (3)
TE —0.3130**  —0.3060*** —0.2790*
Agriculture -0.1940

Chemicals -0.0057

Manufacturing -0.0092

Metals 0.0134

Special 0.0056***

Textile 0.1600***

Wood 0.0292*

Air 0.2030* 0.1680** 0.2040*
Land 0.0340 0.0249 0.0170
Sea —0.2360**  —0.1920*** —0.2200"**
Jan -0.0738  —0.0766™*

Feb -0.0710  —0.0768"**

Mar -0.0751  —0.0773***

Apr 0.1860**  0.1950***

May 0.1770**  0.1820***

Jun 0.0754 0.0784**

Jul 0.0132 0.0159

Aug 0.0021 0.0008

Sep —0.0412**  —0.0406™

Oct —0.0604*  —0.0609**

Nov —0.0723"**  —0.0763"*

Dec -0.0557 —0.0621*

Number of export destinations (ND) -0.1990 -0.1640 -0.2480
Number of import origins (NO) -1.7470  —1.9820*** —2.4440*
Number of exported products (NP) 0.2400 -0.2570 -0.3440
Containment Index Stringency Export 19.3600**  19.5100*** 7.1800*
Containment Index Stringency Import  19.1100*  20.8000*** 7.2490***
Value Exported (log) —0.5110"*  -0.4490 —0.5700*
Value Imported (log) —1.8160** —2.2020"** —2.6860"**
Deviation from sectoral mean v v
Deviation from monthly mean v

Notes: column (1) does not include sector or month variables in the regression; column
(2) includes sectors in the regression; and, column (3) includes both the sector and month
variables. *** means significant at 1%, ** at 5%, and * at 10%. Standard errors are obtained
by bootstrapping the whole estimation process, and joint p-values are adjusted to consider
the simultaneous testing of all variables.

value exported (imported) by firms —expressed in logarithm— among the variables for which
the CADiff is computed highlights the difference in the quantities sold (purchased) by most
and least affected companies. A discussion of the main findings follows.

Considering the estimated individual treatment effects (TE) as a dependent variable, we
find a negative and significant difference between most and least affected firms independently
of the set of controls employed. These results show that the most affected exporters—i.e.,
those located in the first SPE quartile distribution—experienced a decrease in the probabilities
of exporting between 27.9 and 31.3 percentage points lower than the one experienced by the
least affected firms—i.e., those located in the last SPE quartile.

We found significant differences among firms when examining how different aggregate
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sectors are affected. For instance, we detect that the share of textile firms among the most
affected 2019 exporters is 16 percentage points higher with respect to the one estimated for
the group of the least affected firms. Likewise, there is a difference of 2.9 percentage points
in the presence of wood exporters between the most and least affected groups.

We also detect the existence of treatment effect heterogeneity associated with the means of
transportation used by exporters in 2019. On the one hand, there are 16.8 to 20.4 percentage
points more exporters using air transportation among the most affected than among the
least affected firms. However, there are 19.2 to 23.6 percentage points fewer Colombian
exporters using the sea for shipping among the most impacted firms compared to the least
affected ones (Nitsch, 2022).

Looking at the treatment effect heterogeneity associated with months, the first pattern
we notice is that only the months from April to August have a positive estimated parameter.
However, only April and May estimated differences are statistically significant. There are
18.6 to 19.5 percentage points (17.7 to 18.2) more firms in April (May) among the most
affected than among the least affected firms. From September to November, the coefficients
become negative and significant, indicating the beginning stages of recovery.

To evaluate how ex-ante exporter diversification affects the COVID-19 effect, we explore
the estimated parameters associated with ND, NO, and N P. We want to investigate whether
Colombian exporters’ supply chain diversification and export destination diversification help
mitigate the COVID-shock. We do not find compelling evidence that ex-ante diversification
helps to face a shock of this kind, as we can evince from the estimated parameters associated
with ND, NP, and, in the first column, to NO. Following the reasoning of Lafrogne-Joussier
et al. (2022), which exploits the COVID-19 crisis to study the export consequences of a
country-specific supply-side shock by concentrating on the differential import exposure of
French firms to the Chinese early lockdown, one possible explanation is that firms cannot
substitute away the partner (or the product) under COVID-19. Another possible explanation,
which they offer, is that exporters that do not diversify ex-ante can benefit from some form
of ex-post diversification. However, when they restrict the analysis to homogeneous inputs,
Lafrogne-Joussier et al. (2022) find weak evidence of a larger COVID-19 effect for firms with
non-diversified inputs. They restrict the sample to homogeneous inputs because they want
to analyze the COVID-19 effect among inputs expected to be substituted. Similarly, once we
control for the sector and, therefore, inter alia, for the fact that some sector has relatively
more diversification potential, the negative estimated difference turns statistically significant.
Indeed, within sectors, the most affected Colombian exporters tend to import from 1.98
fewer countries in 2019 than the least affected firms. The economic size of this estimate is
large as approximately 60 per cent of Colombian exporters are not integrated into global
value chains (they do not import), and the mean of NO is approximately 4.16 origins.

The CADif f estimated when using the Export (Import) Containment Stringency Index

as dependent variables provides insightful hints on the difficulties of Colombian firms
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in exporting (importing) to (from) countries adopting severe stringency measures. In
particular, the most affected Colombian exporters face, on average, a higher Export (Import)
Containment Stringency Index than those faced by least affected firms by 7.18 to 19.51 (7.25
to 20.80) points, depending on the column in the table.”®

Finally, the least affected firms exported (imported) 156.7% to 176.83% (614.7% to
1467.3%) more value in 2019 than the most affected firms. As expected, Colombian exporters
trading in larger volumes (in value) are more resilient under a COVID-19 scenario. As with
diversification, the comparison of the export and import side reinforces the idea that having
more experience in sourcing inputs from abroad decreases the strength of the shock.

Our results not only show the uneven impact of the COVID-19 crisis across different
covariates, but also highlight the potential of our methodology as a diagnostic tool for targeted
policy interventions. By identifying the most affected firms and sectors, our framework can
support the allocation of scarce public resources and the design of sector and firm-specific

support programs aimed at improving the resilience of the most vulnerable exporters.

4.4 Estimations based on Y — SUM

In this paragraph, following Fabra et al. (2022) and Cerqua and Letta (2020), we use the
estimators based on Eq. (13). These estimators capture the differences between the observed
outcome, Y (binary variable accounting for the success of a Colombian exporter in 2020),
and its counterfactual predictions (SUM). As shown in Figure 5, when the interest lies
in estimating the average treatment effects (by months in this case), the results based on
Y —SUM do not differ from those obtained by using SUM — SAM. We obtain similar results
for the two methodologies also in terms of conditional treatment effects based on subgroups

defined on firm characteristics (e.g., by industry or main export destination country).

28Remember that the Index ranges from 0 to 100.
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Figure 5: Mean difference in the predicted probability of success (SAM vs. SUM /Y vs. SUM) by
month, using Logit-LASSO predictions and (SAM vs. SUM). Standard errors were obtained with
100 bootstrap replications. Confidence intervals for a 5% significance level.

The fact that the two estimators consistently find zero estimated effects for all 2019
exporters (and for subgroups based on the values of individual observables) during the first
quarter suggests that the estimation error of both SUM and SAM, £° and &' respectively,
goes to zero when we average the individual treatment effects across the whole distribution of
2019 exporters (or in subgroups defined by one of the possible dimension of treatment effect
heterogeneity defined by observables; e.g., by industry or main export destination country).

However, since our goal is to identify the main dimensions of treatment effect heterogeneity
by classifying units with the highest and lowest estimated treatment effects, we need also to
evaluate how well these alternative estimation strategies perform in identifying treatment
effects at the extremes of the distribution of treatment effects. Figure 6 shows the average
of the estimated treatment effects obtained with the two estimators for the observations
whose estimated treatment effects (by using Y — SUM) are contained in intervals defined
by two consecutive values of the estimated percentiles of Y — SUM. On the one hand, the
estimator based on Y — SUM is also identifying significant treatment effect heterogeneity

in the first quarter, suggesting that the distribution’s estimation error, £°, is not zero on
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Figure 6: Estimated average treatment effects (SAM — SUM, red line, and Y — SUM, blue line)
by quarter for observations contained in intervals defined by the estimated percentiles of Y — SU M.

average in the tails. Moreover, the shape of the Y — SUM curve is similar across quarters,
suggesting that this estimation method will be prone to misclassifying units when using the
Sorted Effects strategy suggested above. On the other hand, in the first quarter, the shape
of the SAM — SUM curve is flat, showing a constant average estimated effect that is zero
along the whole distribution of the Y — SUM estimated effects, suggesting that by using
the SAM we are able to wash out the estimation error of the SUM because £ = €Y.

This behavior of the estimators based on SAM — SUM is consistent with the results
shown in Figure 4 for the Sorted Effects analysis. Figure 7 shows that the intuition on the
inadequacy of the Y — SU M-based estimators to identify treatment effects on the tail of
the distribution is also confirmed by the Sorted Effects analysis based on this estimation
strategy. When using the Y — SU M individual level estimates to feed the SPE methodology,
we find economically and statistically significant effects of the COVID-19 shock all along the
percentile distribution in the first quarter. While it is true that, on average, £° tends to be
zero across all observations, these findings suggest that this is not true when we focus on
specific segments of the treatment effect distribution, particularly in the tails.

Table 5 presents the classification analysis results on the sources of treatment effect
heterogeneity when the CADif f is estimated using the (Y — SUM) approach. For all the
firm characteristics we examined, we found no statistically significant difference between
the most and least affected groups. This is consistent with the inability of the Y — SUM
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Figure 7: Monthly Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19 on
Colombian firm export’s status. TE is calculated as a difference between the observed outcome (Y")
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

approach to consistently estimate treatment effects in the tails of the «o’s distribution and,
consequently, to identify the groups of the most affected and the least affected firms. In
other words, such groups will be contaminated by the inclusion of firms wrongly classified

due to the estimation error £°.

4.5 Validation of the CATE models

As it is well established in the causal inference literature, the Conditional Average Treatment
Effect (CATE) coincides with both the Conditional Average Treatment Effect on the Treated
(CATT) and the Conditional Average Treatment Effect on the Untreated (CATU) when
the conditioning set includes all explanatory variables (those satisfying the conditional

independence assumption). This is shown in Figure 8, where we represent the estimated
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heterogeneous treatment effects for January obtained by using the T-Learner for CAT Ey 14,3,
CATU and CATT. The latter coincides with our estimator &;. Finally, we also report the
CATT obtained with &;.>

A
T-learner: CATE, CATT (&) and CATU. CATT (@)

N ul I CATE
' @ CATT (&)
I N
2 il B CATT (&)
i O CATU
w —]
2
2
7] ©
[m]
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Predicted Individual Treatment Effect

Figure 8: Heterogeneous treatment effects estimated in the A sample and predicted in the M sample
for the month of January.

For the four estimators, we use Random Forest to estimate the potential outcomes. In
our context, the distribution of observable characteristics is identical for firms that were
observed exporting in 2018 (control group) and those exporting in 2019 (treated group). In
Figure 8, this implies that the density of the CATT, CATU and CATEy, ;) estimated
with the T-Learner are the same. In this paragraph, we will compare results obtained with
the T-Learner and other widely used estimators focusing on the CAT Ey, 3.

The primary aim of this section, which can be interpreted as a robustness check of the
previous results, is to follow the procedure described by Chernozhukov et al. (2024) to apply
the methodology of Chernozhukov et al. (2023) to a research design characterized by the
Conditional Independence Assumption. We will compare the results obtained with SPE (and
CA) with those obtained here by using GATES and CLAN. Finally, we will also estimate
the Best Linear Predictor (BLP) of the CATE, a methodology to statistically test if a CATE
estimator captures any statistically significant indication of treatment effect heterogeneity.

As an additional robustness check, we will also compare the results obtained with our
T-Learner with those obtained by using other commonly adopted methods in the literature

of causal inference (Chernozhukov et al., 2024), namely: the S-Learner, the R-Learner, the

29Notice that we have exactly the same result obtained in Figure 7 for January: the estimators based on
Y-SUM produce a biased estimated distribution of the conditional treatment effects.
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DR-Learner and the Generalized Random Forest (that we also call Causal Forest). An
overview of the adopted learners can be found in Appendix F.

Throughout the section, we will randomly divide the observations in an auxiliary (A),
consisting in 60% of observations, and a main (M) sample as recommended by Chernozhukov
et al. (2023).%Y The models used to identify CATE are estimated using A and are tested in
M. Chernozhukov et al. (2023) show that under mild regularity conditions the estimated
parameters are normally distributed, conditional on the random sample split on A. To take
into account the uncertainty originating from the splitting procedure, they also propose a
multisplitting inference strategy in which the researcher repeat the estimation using different
random division in splits and report the median of those estimates, along with the medians
of the corresponding confidence intervals an p-values.?!

Following Chernozhukov et al. (2023), we start by statistically testing the capacity of
our estimators to capture treatment effect heterogeneity by using the BLP. As previously
mentioned, Chernozhukov et al. (2024) propose a strategy to apply their methodology in
a non-experimental setting. This approach relies on the pseudo-outcome—computed on
the main sample M—of the AIPW-DML estimator (using cross-fitting with 5-Folds and

Generalized Random Forest), which is reported again below:
Ditw-1y(Viato-y = Vi i 1y) (0= Dppote—1y) Vieo—1y = Vi, 0o 1y) :
e(Xp,—1,t,-2}) 1— (X, —1,6,-23)

oy = Yy~ Y-yt

17)

outcome predictions - -
weighted residuals

where, as a reminder, é(-) represents the propensity score.

If the CATE model A(X{ts,us,g}) is well-specified, then the best linear predictor of
the true CATE using the variables (1, A(X{ts,lyts,g})) should yield a statistically significant
coefficient on A(Xy;, 14, _9y). Given that E[YAT?|X] = A(X), the BLP we estimate takes

the following form:

5 . . 2
(81, B2) = arg gllbf;E {( iy = b= ba(A(X g —14,-2y) — E[A(X{trl,ts%})])) ]
where A(X{ts_lﬂgs_g}) is the CATE estimated in A and predicted in M.

Under regularity conditions, indeed, the coefficient [, converges in population to

By = Cov(A(X(r,1,4,-2)), A X1, 1,4,-2)))
9 = =
var(A(X{tstt572}))

In an ideal case where A(X{ts_lgtS_Q}) is perfectly aligned with the true CATE, we expect
B2 = 1. Hence, a statistically significant and positive 5 provides evidence that the CATE
model captures heterogeneous treatment effects.

For each month, Table 6 presents the median of the estimated [, coefficients of the

30Chernozhukov et al. (2023) require that the auxiliary sample be larger than the main sample.
31The results of this section using a single split are also available upon request.
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CATE across 100 (A, M) splits with the relative median p-value for all the months and the
mentioned CATE estimators (we also provide the R? of the regression).*> The results show
that for the months of April and May, all learners achieve highly significant By coefficients
(p-values < 0.001), with magnitudes closer to 1 compared to other months—indicating that
these models successfully detect meaningful treatment effect heterogeneity during those
periods. In these months, the T-, R-, DR-learners, and the Generalized Random Forest
exhibit comparable performance, with the T-Learner attaining slightly larger coefficients. In
contrast, in earlier months (January—March), and late in the year (September—December), all
learners yield low and statistically insignificant coefficients as expected, since in these periods
the effect is constant and estimated to be zero. In the mid-year months (June-August)
the estimated [y coefficients are moderately significant. Overall, Table 6 confirms the
findings from previous sections, where we observed a sizable and heterogeneous COVID-19
impact between April and July, followed by a gradual recovery with decreasing heterogeneity

beginning in August and a return to negligible constant effects by October.

32Following Chernozhukov et al. (2023), the goodness-of-fit of a CATE estimator A(X{ts,l’ts,g})
in the BLP framework is indexed by the signal strength measure Z := |35]? - Var(A(X{ts_Lts_g})) =
Corrz(A(X{ts_ljtﬁ_g}), A(X{ts_17ts_2})) - Var(A (X, —1,¢,—-2})). Maximizing = is equivalent to maximizing
the correlation between the estimated and true CATE functions, which in practice corresponds to maximizing
the R? of the BLP regression. Thus, the learner with the highest R? in a period is the one picking-up an
higher degree of treatment effect heterogeneity.
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Month S-learner T-learner R-learner DR-learner Causal RF
-3.132 -0.361 -0.184 -0.143 -0.474

Jan (0.443) (0.408) (0.549) (0.551) (0.588)
R? =0.00003 R?=10.00035 R?=0.00018 R?=0.00018 R?=0.00014
-0.466 -0.164 0.095 0.137 0.044

Feb (0.522) (0.566) (0.596) (0.663) (0.545)
R? =0.00024 R?=0.00017 R?=0.00014 R?=0.00009 R?=0.00017
2.023 0.236 0.169 0.158 0.665

Mar (0.487) (0.506) (0.608) (0.592) (0.357)
R? =0.00024 R?=0.00022 R?=0.00013 R?=0.00014 R?=0.00042
3.933 1.395 1.352 1.379 1.824

Apr (0.000) (0.000) (0.000) (0.000) (0.000)
R?=10.0223 R?2=0.02493 R?=0.02168 R?=0.02176 R?=0.02186
3.304 1.193 1.295 1.306 1.733

May (0.000) (0.000) (0.000) (0.000) (0.000)
R? =10.01023 R?=0.01486 R?=10.01431 R?=10.01484 R?=0.01382
3.393 0.702 0.842 0.822 1.415

Jun (0.06) (0.014) (0.005) (0.007) (0.003)
R?>=0.00161 R?=0.0029 R?=0.00345 R?=0.00325 R?=0.00395
3.751 0.591 0.534 0.516 1.161

Jul (0.142) (0.072) (0.127) (0.171) (0.044)
R?=10.00102 R?=0.00149 R?>=0.0010 R?>=0.0008 R?=0.00135
5.443 0.685 0.961 0.956 1.471

Aug (0.058) (0.04) (0.008) (0.007) (0.024)
R?=10.00172 R?=0.00292 R?=0.0033 R?=0.0033 R?=0.00231
0.985 0.183 0.184 0.141 0.331

Sep (0.659) (0.614) (0.531) (0.574) (0.549)
R?>=0.0000 R?>=0.0001 R?>=0.0000 R?=0.0001 R?=0.0001
3.641 0.363 0.382 0.447 0.769

Oct (0.301) (0.323) (0.336) (0.268) (0.297)
R?>=10.0004 R?>=0.0004 R?>=0.0006 R?>=0.0000 R?=0.0004
1.411 0.068 0.116 0.106 0.379

Nov (0.563) (0.627) (0.693) (0.689) (0.556)
R?=10.0001 R?=0.0001 R?=0.0000 R?=0.0000 R?=0.0001
2.387 0.214 0.429 0.411 0.561

Dec (0.42) (0.579) (0.29) (0.303) (0.444)
R?>=0.0002 R?>=0.0001 R?=0.0004 R?=0.0004 R?=0.0002

Table 6: Coefficient 85 with their estimated median p-value across 100 A-M splits for the BLP
considering different estimators of the CATE. The same analysis has been done with a single split
without significant changes. Results are available upon request. P-values are clustered at the
individual level.

To evaluate heterogeneity in treatment effects using our estimated models A ((X (ts—1,ts—2}))

we also use the Group Average Treatment Effects (GATES) following Chernozhukov et al.
(2023). We slice the distribution of the estimated CATE into K parts and we are interested
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in the average effect of firms within each slice. Table 7 displays the latter averages. Formally,

for a partition of the support of A(X{ts,l,ts,g}) into 4 quartile-based groups Gy, := {A € I},
the GATE for group Gy is defined as

Situations where the ;s are

Tk = E[

\ATE
{ts—1,ts}

| Gl

similar indicate that no systematic heterogeneity was

detected.
Group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 0.006  -0.005 -0.032 -0.368 -0.263 -0.119 -0.085 -0.085 -0.026 -0.04 -0.011  -0.026
(0.981) (0.981) (0.975) (0.001) (0.004) (0.003) (0.024) (0.178) (0.772) (0.966) (0.983) (0.979)
S-Learner 9 -0.016  -0.005 -0.003 -0.171 -0.176 -0.097 -0.054 -0.056 -0.027 -0.021 0.000  -0.012
(0.982) (0.986) (0.987) (0.003) (0.005) (0.006) (0.063) (0.144) (0.786) (0.878) (0.980) (0.985)
3 -0.012 -0.008 0.001  -0.108 -0.133 -0.062 -0.034 -0.034 -0.024 -0.014 -0.004 -0.004
(0.985) (0.984) (0.987) (0.000) (0.005) (0.005) (0.077) (0.164) (0.733) (0.799) (0.982) (0.988)
4 -0.028 -0.005 0.011  -0.082 -0.052 -0.028 -0.025 -0.025 -0.021 0.005 -0.011 -0.007
(0.975) (0.978) (0.983) (0.000) (0.006) (0.003) (0.078) (0.178) (0.773) (0.979) (0.987) (0.982)
1 0.006  -0.003 -0.025 -0.387 -0.286 -0.120 -0.096 -0.096 -0.029 -0.031 -0.007 -0.025
(0.987) (0.986) (0.979) (0.000) (0.003) (0.001) (0.023) (0.124) (0.799) (0.879) (0.988) (0.982)
T-Learner 9 0.000  -0.003 -0.016 -0.175 -0.173 -0.104 -0.046 -0.046 -0.019 -0.023 -0.006 -0.016
(0.986) (0.983) (0.981) (0.002) (0.005) (0.003) (0.063) (0.163) (0.786) (0.899) (0.980) (0.984)
3 -0.012  -0.004 -0.005 -0.096 -0.123 -0.066 -0.026 -0.026 -0.028 -0.005 -0.011 -0.011
(0.988) (0.985) (0.984) (0.002) (0.002) (0.003) (0.017) (0.177) (0.774) (0.774) (0.983) (0.983)
4 -0.028 0.003  0.016 -0.077 -0.047 -0.022 -0.019 -0.019 -0.016 0.006 -0.013 -0.003
(0.977) (0.987) (0.983) (0.001) (0.020) (0.004) (0.082) (0.182) (0.776) (0.777) (0.981) (0.990)
1 0.006  -0.015 -0.031 -0.382 -0.304 -0.133 -0.087 -0.087 -0.022 -0.042 -0.014 -0.042
(0.983) (0.980) (0.975) (0.004) (0.004) (0.004) (0.063) (0.115) (0.656) (0.636) (0.982) (0.966)
R-Learner 9 -0.004 0.002  -0.005 -0.179 -0.172 -0.101 -0.046 -0.046 -0.017 -0.011 -0.002 0.001
(0.982) (0.981) (0.983) (0.000) (0.003) (0.004) (0.061) (0.162) (0.688) (0.989) (0.989) (0.984)
3 -0.019 -0.015 0.004 -0.105 -0.107 -0.068 -0.024 -0.024 -0.029 -0.015 0.000  0.001
(0.979) (0.986) (0.988) (0.001) (0.006) (0.005) (0.063) (0.176) (0.777) (0.768) (0.988) (0.989)
4 -0.022  -0.002 0.005 -0.084 -0.053 -0.013 -0.033 -0.033 -0.015 0.006 -0.019 -0.009
(0.983) (0.984) (0.985) (0.005) (0.006) (0.010) (0.076) (0.174) (0.783) (0.564) (0.982) (0.989)
1 0.002  -0.014 -0.029 -0.383 -0.303 -0.134 -0.091 -0.091 -0.014 -0.041 -0.015 -0.032
(0.987) (0.983) (0.976) (0.006) (0.000) (0.000) (0.028) (0.171) (0.782) (0.986) (0.984) (0.975)
DR-Learner 9 -0.007  0.001  0.000 -0.168 -0.159 -0.106  -0.052 -0.055 -0.021 -0.013 -0.002 -0.006
(0.985) (0.983) (0.985) (0.003) (0.001) (0.000) (0.06) (0.166) (0.689) (0.986) (0.984) (0.982)
3 -0.013  -0.012 0.000  -0.113 -0.105 -0.061 -0.029 -0.02 -0.023  -0.009 -0.006 -0.003
(0.988) (0.986) (0.988) (0.005) (0.006) (0.002) (0.077) (0.172) (0.780) (0.967) (0.986) (0.987)
4 -0.023  -0.002 0.001  -0.081 -0.054 -0.014 -0.031 -0.031 -0.021 0.011 -0.015 -0.007
(0.982) (0.986) (0.982) (0.000) (0.004) (0.002) (0.075) (0.175) (0.644) (0.878) (0.985) (0.986)
1 -0.004 -0.002 -0.036 -0.388 -0.303 -0.142 -0.098 -0.098 -0.022 -0.046 -0.015 -0.028
(0.982) (0.989) (0.971) (0.002) (0.007) (0.000) (0.022) (0.122) (0.979) (0.964) (0.986) (0.978)
Generalized Random Forest -0.008 -0.014 0.000 -0.166 -0.161 -0.111 -0.055 -0.055 -0.026 -0.015 -0.020 -0.016
(0.986) (0.989) (0.985) (0.000) (0.007) (0.002) (0.056) (0.156) (0.976) (0.984) (0.983) (0.984)
3 -0.014 -0.005 0.002  -0.108 -0.131 -0.057 -0.035 -0.035 -0.025 -0.004 -0.016 -0.007
(0.984) (0.984) (0.985) (0.001) (0.002) (0.006) (0.071) (0.171) (0.679) (0.981) (0.981) (0.982)
4 -0.021  -0.002 0.012 -0.081 -0.041 -0.010 -0.009 -0.009 -0.016 0.012 0.011  0.003
(0.981) (0.984) (0.982) (0.006) (0.005) (0.006) (0.085) (0.185) (0.682) (0.986) (0.985) (0.989)

Table 7: Median GATES coefficients with their estimated median p-value across 100 A-M splits for
the GATEs considering different estimators of CATE. The same analysis was performed with a

single split with no significant changes. The results are available on request.

The results presented in Table 7 corroborate the findings from the main analysis. In
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particular, the placebo tests for the first three months of the year are successful (i.e., the
estimated GATES are all equal and not statistically significant) and the GATES estimates
are substantially larger in magnitude and statistically different during the COVID-19
months—specifically April, May, and June—with some residual evidence in July. In other
words, the probability of exporting declined significantly across all subgroups during these
months, with the impact varying by group, thereby confirming the presence of meaningful
treatment effect heterogeneity.

Among the different learners, the T-Learner and DR-Learner tend to exhibit more pronounced
variation in GATE values across quantiles, suggesting stronger sensitivity to heterogeneity
in treatment effects. The Generalized Random Forest also captures heterogeneity effectively,
especially in the upper quantiles, while the S-Learner generally shows less differentiation
across groups, indicating limited responsiveness to heterogeneity. Overall, the T-Learner
performs competitively, aligning well with the observed patterns of export decline and offering
reliable subgroup-specific estimates. Figure 9 provides a visual representation of the GATES
for the different estimators of CATE with the associated confidence level for the first split

(which are very similar to the more robust multisplit results in Table 7).
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Figure 9: GATES estimates from January, April, and October 2020. The results are shown for
the four quartiles according to CATE. In each graph, the colored bars are from left to right for
Generalized Random Forest (orange), DR-learner (purple), R-learner (green), S-learner (red) and
T-learner (blue). Figure Appx.11 in Appendix F shows the estimates for all months of 2020.
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Having the BLP and GATES analyses confirmed the substantial heterogeneity detected by
the SPE, it becomes particularly interesting to further explore the sources of these differences
following a procedure that is exactly the same of the one used in the previous CA analyses.
What is different here is the inference part. We repeat 100 times the split in A and M
samples, together with the calculation of the first and third quartiles of the distribution of
the estimated CATE and the comparison of the mean characteristics of the firms contained
in the tails of the distribution. Then we aggregate the results by taking the median of the
estimated difference in means and the corresponding p-values. More formally, let X; 4
denote the vector of observed covariates. The CLAN compares the average covariate values

¢

between the “least affected group” G and the “most affected group” Gk, as defined by the
GATES framework.

Table 8 presents the results of the CLAN across various estimators. The results confirm
the findings from the CA analysis reported in Table 5, offering an additional diagnostic.

The CLANSs in Table 8 highlights a consistent pattern of treatment effect heterogeneity
across industrial characteristics, export behavior, and time dummies. Notably, the difference
in means for sectors such as Agriculture, Textile, and Wood are significant across all
learners, with p-values close to zero. For instance, the Textile sector shows systematically
higher representation among more affected firms, especially under the R- and DR-Learners,
suggesting that sectoral affiliation plays a key role in shaping heterogeneity. This is broadly
aligned with the CA findings, where Textile also shows positive and statistically significant
estimate.
Temporal patterns are also consistent across methods. Months corresponding to the
COVID-19 peak (April-June) exhibit strong and positive CLAN differences, particularly
under the Generalized Random Forest. For example, April differences range from 0.30 to
0.36 across learners, all significant at the 1% level. These closely mirror the CADIiff estimates
for the same months, validating the robustness of the temporal heterogeneity captured by
both approaches.
Differences in trade intensity are particularly stark. CLAN reveals substantial negative
differences in Value Exported (log) and Value Imported (log) across all estimators. These
results suggest that more severely affected firms are systematically smaller traders and
confirm the previous findings from CA.
Moreover, similar to the case of diversification, analyzing both the export and import sides
supports and reinforces the previous finding that greater experience in importing inputs

from abroad reduces the severity of the shock.
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T-Learner ‘ S-Learner ‘ R-Learner ‘ DR-Learner ‘ Generalized Random Forest ‘
Outcome variable (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
. -0.0653 -0.0385  0.0912 -0.0916 -0.0730 -0.0534
Agriculture
(0.0000) (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000)
. -0.007 -0.0253  -0.0112 -0.0229 -0.0225 -0.0230
Chemicals
(0.5916) (0.0036) (0.4618) (0.0014) (0.0085) (0.0125)
. -0.019 -0.0283  -0.1183 -0.0144 -0.0175 -0.0141
Manufacturing
(0.0186) (0.0000)  (0.0000) (0.0307) (0.0380) (0.1655)
-0.013 -0.0195 -0.0107 -0.0175 -0.0195
Metals
(0.1525) (0.0140) (0.0919) (0.0290) (0.0162)
. -0.0008 -0.0034 0.0015 -0.0003 -0.0009
Special
(1.0000) (1.0000) (0.6307) (1.0000) (1.0000)
. 0.0939 0.0707 0.0996 0.0932 0.0769
Textile
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.0228 0.0111 0.0297 0.0277 0.0176
Wood
(0.0000) (0.1662) (0.0000) (0.0000) (0.0039)
Ai 0.1347 0.1158 0.2035 0.1118 0.2768 0.1345 0.1108 0.1775 0.1280 0.1055 0.1729 0.1254 0.1044 0.3090
ir
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
Land 0.0051 0.0049 0.0029 -0.0176 0.0124 -0.0067  -0.0057 -0.0092 -0.0053 -0.0023 -0.0076 -0.0106 -0.0041 -0.0135
an
(0.5944) (0.7076) (0.2341) (0.0521) (0.1008) (0.3091) (0.3712) (0.3296) (0.4692) (0.8440) (0.3065) (0.2261) (0.4418)  (0.4765)
Sea -0.1585  -0.1319  -0.2459  -0.1469 -0.2187  -0.1929  -0.1610  -0.2777 -0.1720 -0.1394 -0.2643 -0.1687 -0.1430  -0.4199
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
J -0.1314  -0.1316 -0.1124  -0.1402 -0.0694  -0.0676 -0.1307  -0.1319 -0.1856  -0.1866
anuary
° (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
Feb -0.1259  -0.1277 -0.1149  -0.1302 -0.0820  -0.0860 -0.1319  -0.1352 -0.1961  -0.1979
ebruary
Y (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
Mardl -0.1202  -0.1200 -0.1530  -0.1187 -0.1292  -0.1309 -0.1316  -0.1311 -0.1806  -0.1792
Iarch
(0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
Anril 0.2963 0.3004 0.3354 0.2897 0.3014 0.3074 0.3052 0.3118 0.3641 0.3691
T
P (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
M 0.2786 0.2791 0.2225 0.2893 0.2804 0.2822 0.2855 0.2868 0.3515 0.3539
ay
: (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
J 0.1301 0.1293 0.1211 0.1453 0.1546 0.1519 0.1313 0.1293 0.1791 0.1746
June
(0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
Jul 0.0256 0.0263 0.0115 0.0111 -0.0391  -0.0388 0.0295 0.0275 0.0372 0.0354
uly
Y (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
A ¢ 0.0016 0.0014 0.01323  0.00254 0.0190 0.0187 -0.0004  -0.0018 0.0006 0.0001
ugus
s (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
Sentemb. -0.0589  -0.0580 -0.0662  -0.0896 -0.0407  -0.0388 -0.0636  -0.0624 -0.0784  -0.0765
eptember
! (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
October -0.0796  -0.0803 -0.0657  -0.09877 -0.1297  -0.1332 -0.0829  -0.0843 -0.1016  -0.1016
o (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
N b -0.1157  -0.1177 -0.1091  -0.1675 -0.1103  -0.1106 -0.1139  -0.1146 -0.1672  -0.1658
ovember
(0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
D b -0.1001  -0.1000 -0.1341  -0.0908 -0.1548  -0.1543 -0.1047  -0.1045 -0.1344  -0.1238
ecember
(0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000)
L -0.2390  -0.1800  -0.3055 -0.4465 -0.3560  -0.2855 -0.3315 -0.2238 -0.4854 -0.4096 -0.3187 -0.5247 -0.3652 -0.2952 -1.1601
Number of export destination (ND)
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
.. L. -0.8198  -0.7726  -1.2243  -0.9680 -0.8261  -1.0672 -0.8946 -0.8183 -1.0788 -0.8927 -0.8075 -1.3310 -0.9045 -0.8278 -1.9191
Number of import origins (NO)
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
0.0379 -0.2005  -0.2671  -0.3269  -0.2733  -0.3246 -0.0921  -0.2508  -0.4249 -0.0668 -0.2476 -0.3121 -0.1759  -0.2649 -0.3483
Number of exported products (NP)
(0.5970)  (0.0393) (0.0458) (0.0066) (0.0030) (0.0438) (0.4009) (0.0033) (0.0000) (0.4806) (0.0098) (0.0072) (0.4934) (0.01099) (0.01129)
. -0.5692  -0.5133  -0.9142  -0.6218 -0.5611 -1.9233 -0.7167 -0.6382 -1.0998 -0.6545 -0.5854 -1.1236 -0.7247 -0.6451 -1.8854
Value Exported (log)
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
Value T ted (log) -1.3158  -1.2947  -2.1863 -1.7081 -1.5344 -1.1924 -1.7072 -1.6628 -2.7229 -1.5690 -1.4955 -2.6176 -1.5667 -1.4588 -3.1997
alue Imported (lo
P & (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
Deviation from sectoral mean v v v v v v v v v v
Deviation from monthly mean v v v v v

Table 8: CLANs with 100 splits for S-Learner, T-Learner, R-Learner,
Random Forest. We report the median of joint p-values.
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5 Concluding discussion

In this paper, we show the potential of ML techniques for building counterfactuals, identifying
the most affected subpopulations and the sources of treatment effect heterogeneity in scenarios
where a credible control group is unavailable and it is difficult to define ex-ante the intensity
of the shock for each unit.

In the application we consider, we concentrate on the effects of an economy-wide shock
such as COVID-19 on a firm’s export behaviour. Using data from the Colombian customs
office, we estimate that, during 2020, on average, the COVID-19 shock decreased a firm’s
probability of surviving in the export market by about 15 to 20 percentage points in April
and May and by approximately 5 to 8 percentage points in June and July. By analysing the
estimated treatment effect distribution, we reveal that these average results hide considerable
heterogeneity. For example, in April 2020, we find that for some exporters COVID-19
decreased their survival probability by 55 percentage points. We identify the firms most
and least affected by COVID-19 and we compare their characteristics by integrating the
Sorted Partial Effects methodology with our causal ML approach. We emphasize how the
integration into global value chains on the import side, both in terms of the number of
countries from which a firm sources and the value of imports, is an important factor of
resilience for exporters facing the COVID-19 shock.

From a methodological point of view, we show practitioners how to apply the generic
ML tools proposed by Chernozhukov et al. (2023) to a context in which there is no control
group available; we suggest how to use in-time placebo tests to check the credibility of
counterfactual estimates; finally, we provide evidence indicating that in the Sorted Partial
Effects analysis, in which the focus lies on the tails of the distribution of the treatment
effects, it is critical to correct the estimation error arising from the necessarily imperfect
reconstruction of the unobservable counterfactual.

While this method is specifically designed for analyzing the heterogeneous impacts of
economy-wide shocks, there exists potential utility in employing this approach in less extreme
situations where policies or shocks may exhibit unobservable spillovers that are challenging
to model in advance. In such contexts, our empirical framework proves advantageous in
detecting these potential heterogeneous indirect effects, as it circumvents the need for a
priori identification of a control group of untreated units.

Finally, in this paper we also demonstrate that ML methods can be applied successfully
to predict firms’ trade potential. We consider ML methods a promising tool to assist
firms and public agencies in their export decision-making processes. The bulk of countries
possesses export promotion agencies whose objective is to sustain firms’ internationalization
activities by lowering the costs of information acquisition (Broocks and Van Biesebroeck, 2017;
Munch and Schaur, 2018). Given that exporters’ dynamics can be understood as a complex
learning process dense of interdependencies (complementarity or substitutability) between

products and destination markets (from the perspective of technology /knowledge, local tastes,
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legal requirements, and marketing and distribution costs) and that ML techniques have
been successfully applied to predict firm performances in such settings, we believe that an
important avenue for future research is to test the effectiveness of using these techniques and
firm-level data to build recommendation systems. These systems could help firms identify
their latent comparative advantages and provide export diversification and differentiation

recommendations.
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Table 5: Estimated differences in means of the estimated treatment effect and other covariates
between the group of more affected and the group of less affected firms (CADif f) applying the
classification analysis to the Y — SUM estimates

Outcome variable ﬁil} 5;2} 5§3f)
TE -1.0910 -1.0930*** -1.0710
Agriculture -0.0616

Chemicals -0.0192

Manufacturing 0.0112

Metals 0.0109

Special 0.0059

Textile 0.0486

Wood 0.0041

Air 0.0411 0.0271 0.0289
Land 0.0086 0.0062 0.0068
Sea -0.0482 -0.0321 -0.0343
Jan -0.0190  -0.0189

Feb -0.0242  -0.0237

Mar -0.0181  -0.0181

Apr 0.0631 0.0630

May 0.0620 0.0612

Jun 0.0166 0.0167

Jul 0.0033 0.0028

Aug -0.0050  -0.0053

Sep -0.0169  -0.0167

Oct -0.0216  -0.0208

Nov -0.0218 -0.0222

Dec -0.0183 -0.0181

Number of export destinations (ND) 0.3310 0.3470 0.3306
Number of import origins (NO) 0.0350  -0.0595  -0.1077

Number of exported products (NP) 0.6050 0.4670 0.4275
Containment Index Stringency Export -0.2280  -0.0264 0.9690
Containment Index Stringency Import -4.2180  -4.4910  -0.0520

Value Exported (log) -0.2700  -0.2760  -0.1800
Value Imported (log) -0.0910  0.0296 0.0040
Deviation from sectoral mean v v
Deviation from monthly mean v

Notes: column 1 does not include sector or month variables in
the regression; column 2 includes sector in the regression, and,
column 3 includes both the sector and month variables. *** means
significant at 1%, ** at 5%, * at 10%. Standard errors are obtained
by bootstrapping the whole estimation process and joint p-values
are adjusted to take into account the simultaneous testing of all the
variables.

47



References

Abadie, A., A. Diamond, and J. Hainmueller (2015). Comparative politics and the synthetic control
method. American Journal of Political Science 59(2), 495-510.

Albornoz, F., H. F. C. Pardo, G. Corcos, and E. Ornelas (2012). Sequential exporting. Journal of
International Economics 88(1), 17-31.

Antras, P. and D. Chor (2022). Global Value Chains, Volume 5. Elsevier.

Antras, P., S. J. Redding, and E. Rossi-Hansberg (2023). Globalization and pandemics. American
Economic Review 113(4), 939-981.

Arkolakis, C., S. Ganapati, and M.-A. Muendler (2021). The extensive margin of exporting products:
A firm-level analysis. American Economic Journal: Macroeconomics 13(4), 182-245.

Athey, S., J. Tibshirani, and S. Wager (2019). Generalized random forests. The Annals of
Statistics 47(2), 1148-1178.

Baiardi, A. and A. A. Naghi (2024). The value added of machine learning to causal inference:
Evidence from revisited studies. The Econometrics Journal 27(2), 213-234.

Baldwin, R. and E. Tomiura (2020). Thinking ahead about the trade impact of COVID-19.
Economics in the Time of COVID-19 59.

Bargagli-Stoffi, F. J., J. Niederreiter, and M. Riccaboni (2021). Supervised learning for the
prediction of firm dynamics. In Data Science for Economics and Finance: Methodologies and
Applications, pp. 19-41. Springer International Publishing Cham.

Berthou, A. and S. Stumpner (2024). Trade under lockdown. Journal of International Economics 152,
104013.

Bonadio, B., Z. Huo, A. A. Levchenko, and N. Pandalai-Nayar (2020). Global supply chains in the
pandemic. National Bureau of Economic Research, No. w27224.

Breinlich, H., V. Corradi, N. Rocha, M. Ruta, J. Santos Silva, and T. Zylkin (2022). Machine
learning in international trade research-evaluating the impact of trade agreements.

Broocks, A. and J. Van Biesebroeck (2017). The impact of export promotion on export market
entry. Journal of International Economics 107, 19-33.

Buhl-Wiggers, J., J. T. Kerwin, J. Munioz-Morales, J. Smith, and R. Thornton (2024). Some
children left behind: Variation in the effects of an educational intervention. Journal of
Econometrics 243(1-2), 105256.

Cepeda-Lépez, F., F. Gamboa-Estrada, C. Leén-Rincén, and H. Rincén-Castro (2019). Colombian
liberalization and integration to world trade markets: Much ado about nothing. Borradores de
Economia; No. 1065.

Cerqua, A. and M. Letta (2020). Local economies amidst the COVID-19 crisis in Italy: a tale of
diverging trajectories. COVID Economics (60), 142-171.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins
(2018). Double/debiased machine learning for treatment and structural parameters.

Chernozhukov, V., M. Demirer, E. Duflo, and I. Fernandez-Val (2023). Fischer-schultz lecture:
Generic machine learning inference on heterogenous treatment effects in randomized experiments,
with an application to immunization in india. Technical report, Working Papers hal-04238425,
HAL.

48



Chernozhukov, V., I. Ferndndez-Val, and Y. Luo (2018). The sorted effects method: discovering
heterogeneous effects beyond their averages. Econometrica 86(6), 1911-1938.

Chernozhukov, V., C. Hansen, N. Kallus, M. Spindler, and V. Syrgkanis (2024). Applied causal
inference powered by ml and ai. arXiv preprint arXiv:2403.02467.

Curth, A. and M. Van der Schaar (2021). Nonparametric estimation of heterogeneous treatment
effects: From theory to learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1810-1818. PMLR.

de Lucio, J., R. Minguez, A. Minondo, and A. F. Requena (2020, December). Impact of COVID-19
containment measures on trade. Working Papers 2101, Department of Applied Economics II,
Universidad de Valencia.

Dehling, H. and W. Philipp (2002). Empirical process techniques for dependent data. In Empirical
process techniques for dependent data, pp. 3—113. Springer.

Deryugina, T., G. Heutel, N. H. Miller, D. Molitor, and J. Reif (2019). The mortality and
medical costs of air pollution: Evidence from changes in wind direction. American Economic
Review 109(12), 4178-4219.

Drees, H. and H. Rootzén (2010). Limit theorems for empirical processes of cluster functionals.
Eslava, M., J. Tybout, D. Jinkins, C. Krizan, J. Eaton, et al. (2015). A search and learning model
of export dynamics. In 2015 Meeting Papers, Number 1535. Society for Economic Dynamics.
Espitia, A., A. Mattoo, N. Rocha, M. Ruta, and D. Winkler (2021). Pandemic trade: COVID-19,

remote work and global value chains. The World Economy.

Evenett, S. (2020). Sicken thy neighbour: The initial trade policy response to COVID-19. The
World Economy 43(4), 828-839.

Fabra, N., A. Lacuesta, and M. Souza (2022). The implicit cost of carbon abatement during the
COVID-19 pandemic. European Economic Review 147, 104165.

Felbermayr, G. and H. Goérg (2020). Implications of COVID-19 for globalization. KIELER
BEITRAGE ZUR, 3.

Garavito, A., A. L. Garavito-Acosta, E. Montes-Uribe, J. H. Toro-Cérdoba, C. Agudelo-Rivera,
V. A. Corredor-Alfonso, A. D. Carmona, M. M. Collazos-Gaitan, C. Gonzalez-Sabogal, M. D.
Hernandez-Bejarano, et al. (2020). Ingresos externos corrientes de colombia: desempenio
exportador, avances y retos. Revista Ensayos Sobre Politica Economica; No. 95, julio 2020. Pdyg.:
1-81.

Grossman, G. M., E. Helpman, and H. Lhuillier (2021). Supply Chain Resilience: Should Policy
Promote Diversification or Reshoring? National Bureau of Economic Research, No. w29330.
Hale, T., A. Petherick, T. Phillips, and S. Webster (2020). Variation in government responses to

COVID-19. Blavatnik school of government working paper 31, 2020-11.

Halpern, L., M. Koren, and A. Szeidl (2015). Imported inputs and productivity. American Economic
Review 105(12), 3660-3703.

Keele, L. (2015). The statistics of causal inference: A view from political methodology. Political
Analysis 23(3), 313-335.

Kennedy, E. H. et al. (2020). Optimal doubly robust estimation of heterogeneous causal effects.
arXiwv preprint arXiw:2004.14497 5.

Knaus, M. C. (2022). Double machine learning-based programme evaluation under

49



unconfoundedness. The Econometrics Journal 25(3), 602-627.

Koltchinskii, V. (2011). Oracle inequalities in empirical risk minimization and sparse recovery
problems: Ecole D’Eté de Probabilités de Saint-Flour XXXVIII-2008, Volume 2033. Springer.
Kramarz, F., J. Martin, and I. Mejean (2020). Volatility in the small and in the large: The lack of

diversification in international trade. Journal of international economics 122, 103276.

Kiinzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu (2019). Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the national academy of sciences 116(10),
4156-4165.

Lafrogne-Joussier, R., J. Martin, and I. Mejean (2022). Supply shocks in supply chains: Evidence
from the early lockdown in China. IMF Economic Review, 1-46.

Liu, X., E. Ornelas, and H. Shi (2021). The Trade Impact of the COVID-19 Pandemic. The World
Economy.

Magnan, N., V. Hoffmann, N. Opoku, G. G. Garrido, and D. A. Kanyam (2021). Information,
technology, and market rewards: Incentivizing aflatoxin control in Ghana. Journal of Development
Economics 151, 102620.

McKenzie, D. and D. Sansone (2019). Predicting entrepreneurial success is hard: Evidence from a
business plan competition in Nigeria. Journal of Development Economics 141, 102369.

Mirzaei, E., V. R. Kostic, A. Maurer, et al. An empirical bernstein inequality for dependent data in
hilbert spaces and applications. In The 28th International Conference on Artificial Intelligence
and Statistics.

Munch, J. and G. Schaur (2018). The effect of export promotion on firm-level performance.
American Economic Journal: Economic Policy 10(1), 357-87.

Navas, A., F. Serti, and C. Tomasi (2020). The role of the gravity forces on firms’ trade. Canadian
Journal of Economics/Revue canadienne d’économique 53(3), 1059-1097.

Nie, X. and S. Wager (2021). Quasi-oracle estimation of heterogeneous treatment effects.
Biometrika 108(2), 299-319.

Nitsch, V. (2022). COVID-19 and international trade: Evidence from New Zealand. Economics
Letters, 110627.

Ocampo, J. A. and C. Tovar (2000). Colombia in the classical era of ‘inward-looking development’,
1930-74. In E. Céardenas, J. Ocampo, and R. Thorp (Eds.), An economic history of
twentieth-century Latin America, pp. 239-281. Springer.

Okui, R. and T. Yanagi (2019). Panel data analysis with heterogeneous dynamics. Journal of
Econometrics 212(2), 451-475.

Pierce, J. R. and P. K. Schott (2012). A concordance between ten-digit US Harmonized System
Codes and SIC/NAICS product classes and industries. Journal of Economic and Social
Measurement 37(1-2), 61-96.

Probst, P., M. N. Wright, and A.-L. Boulesteix (2019). Hyperparameters and tuning strategies
for random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discovery 9(3),
el301.

Sadhanala, V. and R. J. Tibshirani (2019). Additive models with trend filtering. The Annals of
Statistics 47(6), 3032-3068.

Salditt, M., T. Eckes, and S. Nestler (2024). A tutorial introduction to heterogeneous treatment

20



effect estimation with meta-learners. Administration and Policy in Mental Health and Mental
Health Services Research 51(5), 650-673.

Singh, R. S. (1975). On the glivenko—cantelli theorem for weighted empiricals based on independent
random variables. The Annals of Probability, 371-374.

Tsybakov, A. B. and A. B. Tsybakov (2009). Nonparametric estimators. Introduction to
Nonparametric Estimation, 1-76.

Van Biesebroeck, J., E. Yu, and S. Chen (2015). The impact of trade promotion services on Canadian
exporter performance. Canadian Journal of Economics/Revue canadienne d’économique 48(4),
1481-1512.

Varian, H. R. (2016). Causal inference in economics and marketing. Proceedings of the National
Academy of Sciences 113(27), 7310-7315.

Wager, S. and S. Athey (2018). Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association 113(523), 1228-1242.

World Bank (2020). Global Economic Prospects, June 2020. Washington, DC: World Bank.
Available at: https://openknowledge.worldbank.org/handle/10986/33748.

Zuluaga, 0.1, C. G. Cano, J. J. Echavarrfa, F. Tenjo, J. P. Zérate, and J. D. Uribe (2009). Informe
de la Junta Directiva al Congreso de la Republica — Marzo de 2009. Banco de la Republica de

Colombia.

51


https://openknowledge.worldbank.org/handle/10986/33748

A Appendix - The Colombian economy amidst the
COVID-19 crisis

Colombia exports little compared to other countries in Latin America with similar development
levels. In recent years, the share of total exports of Colombian GDP has oscillated around 15%, well
below other countries in the region such as Chile and Mexico (Cepeda-Lépez et al., 2019). Colombia
started to open its economy in the 1990s with several market-oriented reforms to liberalize financial
and capital markets. Although the Colombian economy was still relatively closed during most
of the twentieth century (Ocampo and Tovar, 2000), it has been strongly affected by the global
financial crisis in 2008-2009 (Zuluaga et al., 2009). Nowadays, despite the growing number of trade
agreements, partners, and volume of trade, the integration of Colombia into world trade markets is
still modest.

The main reason behind Colombia’s poor performance is the low diversification of trade, with
a prevalence of primary products, because of the relative abundance of natural resources and
low-skilled labor. Besides, the emergence of raw products derived from mining has gained a larger
share in total exports, reducing the importance of other products such as coffee, bananas, flowers,
some labor-intensive manufactures, and petrochemicals (Garavito et al., 2020).

Since the outbreak of the COVID-19 pandemic, Colombia implemented early measures to
contain the spread of COVID-19 and prepare the health system and mitigate the economic and
social impact. The Colombian government issued non-compulsory requests for remote working to
private companies on February 24, 2020; schools and universities were closed on March 16. On
March 25, when there were fewer than a dozen deaths, the government implemented a complete
and mandatory lockdown until April 13. During this period, only a few essential activities — such
as health services, public services, communications, banking and financial services, food production,
pharmaceuticals, and cleaning and disinfection products — were excluded. The partial lockdown
implementation—-between April 27 and May 11-allowed a gradual restoration of mobility, enabling a
set of non-essential activities under security guidelines and protocols to guarantee social distancing.
Most manufacturing activities were gradually allowed at this stage, while non-authorized activities
were restricted to sell their products through electronic commerce platforms. Finally, from May 28,
restrictions to the services sector have been lifted, and on September 1, the government announced
the confinement end, and airports were opened.

To better cope with the emergency, Colombian authorities have introduced transitory provisions
to secure international trade of essential products. Along with the lockdown measures, medicines,
supplies, and equipment in the health sector had zero tariffs for six months. Besides, the export
and re-export of these products were forbidden. There was a zero-tariff from April 7 to June 30 for
raw materials such as maize, sorghum, soybeans, and soybean cake.

During the second half of 2020, the Colombian government implemented several economic
recovery policies. These included unconditional cash transfers through programs such as Ingreso
Solidario, Familias en Accion, Jovenes en Accion, and the Dia sin IVA (VAT-free day), alongside
support from Family Compensation Funds (Cajas de Compensacion), benefiting millions of

households living in poverty or vulnerable conditions.

52



In terms of sectoral and business support, various credit lines and incentives were introduced.
For example, financial assistance was provided to the country’s main commercial airline through
the Fondo de Mitigacion de Emergencias (FOME), in order to preserve air connectivity. The
government also launched credit lines through local development banks, most notably Bancdldex,
such as Colombia Responde, initially targeted at the tourism, aviation, and entertainment sectors.
These lines were later extended to other industries, offering reduced interest rates and guarantees,
particularly for micro and small enterprises. Additional instruments such as Reactivate were
introduced to help SMEs across all sectors finance the implementation of biosecurity protocols.
A significant share of the incentives focused on so-called “strategic sectors” such as mining,
infrastructure, and construction, with fiscal benefits and targeted subsidies aimed at stimulating
investment and employment. However, our analysis does not aim to assess the effectiveness of these
recovery measures. Indeed, many of them were not specifically targeted at exporting companies.
Therefore, we do not create a counterfactual scenario depicting outcomes without such recovery

policies, which can be explored in future research.
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B Appendix - Data

Table Appx.1: Predictors for exporters’ success

Variable

Description

Source

Models: SUM and SAM

NP,ND,NO

HH,, HHy

Total
(exports)
Total
(imports)

value

value

Size

Destination

Origin

Continent

Department

of
Transportation

Means

Sector

Industry

Sector

Experience

Destination
Experience

Exporter
(importer)
Experience

Number of products exported by, number of destinations where a company exports, and number of
import origin countries for an exporter in a given month, respectively.

Product-Herfindahl Index, and Destination-Herfindahl Index. Measure the concentration of products
at 6-digit HS, and the concentration at destination by company-month, respectively.

Free on board value of the export transaction in US dollars for each company-month.

Free on board value of the import transaction in US dollars for each company-month.

4 class dummies classifying firms according to the quartiles of the firm-level (Q1, Q2, Q3 and Q4)
distribution of the total monthly value of exports (in In).

Factor variable with one level (dummy variable) for each destination country where Colombian
exporters operate by month.

Factor variable with one level (dummy variable) for each import origin country, where Colombian
exporters operate by month.

Factor variable with one level (dummy variable) for each continent where Colombian exporters
operate.

Factor variable with one level (dummy variable) for cach department (region) in Colombia from
which companies operate.

4 class dummies indicating the means of transportation a company uses to perform a transaction
(land, sea, air, others).

99 class dummies for the classification of company products by 2-digit HS code (corresponding to
HS-chapters).

22 class dummies indicating the industries (HS-sections) where companies operate.

Factor variable with one level (dummy variable) for each sector. Takes value 1 in all periods after
a company exports for the first time in a given sector (reflecting past experience in a sector).

Factor variable with one level (dummy variable) for each destination. Takes value 1 in all periods
after a company exports for the first time in a given destination (reflecting past experience in a
destination).

Variable counting the accumulated value exported (imported) in the last twelve months.

Authors’ own elaboration
from Colombian Customs
Office (DIAN).

Authors’ own elaboration
from  the  Colombian
Customs Office (DIAN).
Colombian Customs Office
(DIAN)

Colombian Customs Office
(DIAN)

Authors’ own elaboration

Colombian Customs Office
(DIAN)
Colombian Customs Office
(DIAN)

Authors’ own elaboration

Colombian Customs Office
(DIAN)
Colombian Customs Office
(DIAN)

Authors’ own elaboration

Authors’ own elaboration
from  the  Colombian
Customs Office (DIAN).
Authors’ own elaboration
from  the  Colombian
Customs Office (DIAN).
Authors’ own elaboration
from  the  Colombian
Customs Office (DIAN).
Authors’ own elaboration
from  the  Colombian
Customs Office (DIAN).

Models: SAM (COVID-19 variables)

Containment
Economic

Index

Containment
Government
Index

Containment
Health Index

Containment
Stringency
Index

‘We consider the Economic Index from Hale et al. (2020) that provides a measure of the strength
of the economic policies set in place to deal with the pandemic (such as income support and
debt relief) for each country in the world. It ranges from 0 to 100. At the firm level we define
two variables, one at the export and one at the import side, by taking a weighted average of
these country level scores according to the monthly value of exports(imports) that a company
ships(source) in every country.!

We consider the Government Index from Hale et al. (2020) that measures the strictness of 'lockdown’
style policies that primarily restrict people’s behavior. It ranges from 0 to 100. At the firm level
we define two variables, one at the export and one at the import side, by taking a weighted average
of these country level scores according to the monthly value of exports(imports) that a company
ships(source) in every country.

We consider the Health Index from Hale et al. (2020) that combines 'lockdown’ restrictions
and closures with measures such as testing policy and contact tracing, short-term investment in
healthcare, as well as investments in vaccine. Ranges from 0 to 100. At the firm level, we define
two variables, one at the export and one at the import side, by taking a weighted average of these
country-level scores according to the monthly value of exports(imports) that a company ships
(source) in every country.

We consider the Stringency Index from Hale et al. (2020) that records how the response of
governments has varied over all indicators, becoming stronger or weaker over the course of the
outbreak. Ranges from 0 to 100. At the firm level we define two variables, one at the export and
one at the import side, by taking a weighted average of these country level scores according to the
monthly value of exports(imports) that a company ships(source) in every country.

Hale al. (2020) and
Colombian Customs Office

(DIAN).

et

Hale et al. (2020) and
Colombian Customs Office

(DIAN).

Hale et al. (2020) and
Colombian Customs Office

(DIAN).

Hale et al. (2020) and
Colombian Customs Office

(DIAN).

Models: SUM and SAM (variables only for Logit, Logit-LASSO, Logit-Ridge and SVM)

Size*Industry

Size*Sector

Size*Means
of
Transportation

Size*Destination

Factor variables with 5 levels for each industry. It takes the value 1 if the firm size is Q1, the
value 2 if the firm size is Q2, the value 3 if the size is Q3 and the value 4 if the size is Q4 while
operating in a particular industry. However, it takes the value 0 if a company is not active in this
industry (regardless of size).

Factor variables with 5 levels for each sector. It takes the value 1 if the firm size is Q1, the value 2
if the firm size is Q2, the value 3 if the size is Q3 and the value 4 if the size is Q4 while operating in
a specific sector. However, it takes the value 0 if a company is not active in this sector (regardless
of size).

Factor variables with 5 levels for each sector. It takes the value 1 when the company size is Q1,
value 2 when the company size is Q2, value 3 when the size is Q3, and value 4 when the size is Q4
while operating using a given means of transportation. However, it takes value 0 if a company is
not operating using this means of transportation (for any size level).

Factor variables with 5 levels for each sector. It takes the value 1 when the company size is Q1,
value 2 when the company size is Q2, value 3 when the size is Q3, and value 4 when the size is Q4
while operating in a given destination. However, it takes value 0 if a company is not operating in
this destination (for any size level).

Authors’ own elaboration
based on the Colombian
Customs Office (DIAN).

Authors’ own elaboration
based on the Colombian
Customs Office (DIAN).

Authors’ own elaboration
from  the  Colombian
Customs Office (DIAN).

Authors’ own elaboration
from the Colombian
Customs Office (DIAN).

* https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data

! When an exporter does not import, we impute the corresponding internal Index (Economic, Government, Health, and Stringency) of Colombia to

create the corresponding import side Index.

2 Only the variables and interactions listed in this table were used in the analysis (no second or higher degree polynomial function). Interactions were

removed in tree-based models (XGBoost and Random Forest).
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Table Appx.2: Sector-Industry mapping

Section (Industry)

Industry Name

HS-Chapter (Sector)

0 O U i Wi

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22

Live Animals/ Animal Products
Vegetable Products

Animal or Vegetable Fats/Oils
Prepared Foodstuffs

Mineral Products

Products of Chemical Industries
Plastics, Rubber

Raw Hides, Skins and Leather
Wood

Paper

Textile

Footwear

Art. of Stone, Cement

Jewelries

Base Metals

Machinery Equipment

Vehicles

Precision Instruments

Arms

Miscellaneous Manufactured Articles

Works of Art
Special Classification Provisions

1-5
6-14
15
16-24
25-27
28-38
39-40
41-43
44-46
47-49
50-63
64-67
68-70
71
72-83
84-85
86-89
90-92
93
94-96
97
98-99

Source: Author’s elaboration using Pierce and Schott (2012) tables.
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C Appendix - Descriptive Statistics

The left panel in Figure Appx.1 shows the evolution of total monthly exports during 2019 and
2020. The total monthly value of exports in 2020 is significantly lower than the one observed
for the corresponding month in 2019, except for January and February. The lockdown measures
implemented to contain the COVID-19 outbreak in Colombia and abroad had a severe impact
between April and June—the value in April 2020 is half of the one observed in April 2019 (47%).
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Figure Appx.1: The evolution of total exports (left) and the proportion of surviving exporting
firms in year ¢ among those exporting in year ¢t — 1 within size classes defined at t — 1 (right). Firm
size classes are based on the quartiles of the firms’ exports (in In) distribution in a given month.

In a typical month, large firms get a lion’s share of the total exports. A regular pattern in
looking at customs data is that more prominent exporters trade for many months and ship more
frequently than smaller firms, which make only a few shipments. The right panel in Figure Appx.1
shows the proportion of surviving exporting firms in year ¢ among those exporting in year ¢ — 1,
by size classes defined at t — 1. Comparing the figures for 2020 with those for 2019, it seems
that the COVID-19 outbreak affected all firms regardless of their size. However, the effect looks
proportionally stronger for small firms (Q1 and Q2 of the distribution). In contrast, larger firms
are less affected and recover faster than the survival rates observed in 2019.

In the following of this Appendix C, we show the growth patterns of the number of exporters and
export volumes between 2019 and 2020 (and, as a comparison, between 2018 and 2019) segmented
by country of destination and product sector, offering further insights into the heterogeneous
impacts of the COVID-19 pandemic on Colombian exports.

Figure Appx.2 shows, separately for the first and second quarter of a year, the percentage of
firms that survive, enter or exit the export market and their corresponding shares of total exports.
Thus, for a given quarter in 2019 and the corresponding quarter in 2020, we label each firm as
ezxiting when it is present in 2019 and absent in 2020, entrant when it is absent in 2019 and present
in 2020, and surviving when it is present in both years. We average the total value exported by
each firm during the same quarter of two different years. Then, we sum the individual average
value exported according to the firms’ status. It turns out that surviving firms play an essential
role in explaining total exports: they are around half of the total number of firms in both quarters

and account for about 90% of the total export value. The volume lost, during the second quarter
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of 2020, due to exiting firms is around 5% (assuming they would have exported in 2020 similar
export volumes as observed in 2019). Entrant firms almost made up this 5% loss. Despite this, the
firms’ composition that participates in exports is very different. The number of existing firms in
the second quarter of 2020 is much higher than the share of the first quarter of 2020 and the share
of 2019 in the same period of the year.
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Figure Appx.2: Entry-exit dynamics of firms and total export value by firms that drop, enter or
stay active, in 2019 (upper part of the figure) and in 2020 (bottom part of the figure) by quarters.
Firm status is defined by looking at the previous year.

Figures Appx.3 and Appx.4 show the growth of the total number of exporters and the growth
of the total volume of exports between 2019 and 2020, by country of destination and product sector.
We consider the first and the second quarter separately, and we select destinations and product
sectors that account for 80% of the total exporters in 2019. In both figures, the product sectors
and the destinations are arranged by importance from top to bottom.

Figure Appx.3 shows that, compared to the first quarter of 2020, the second quarter of the year
is characterized by a severe and pervasive drop in the number of exporting firms and the volume of
exports in almost all the destinations reported. Figure Appx.5 shows that the same drop is not
observed during the second quarter of 2019. During the third and fourth quarters of 2020, the
value exported experienced more volatility than the number of firms. Nevertheless, the latter did
not recover to the growth rates of the first quarter of the year.

Exports by product sectors in the second quarter of 2020 (see Figure Appx.4) reveal a generalized
decrease in the number of exporting firms and trade values, while the first quarter exhibits very
heterogeneous patterns. The sectors that appear to be more severely affected in the second quarter
are Footwear (HS64), Leather Articles (HS42), Furniture (HS94), Books (HS49), Articles of Metal
(HS83), Knitted and Not-Knitted Accessories (HS61-62), Vehicles (HS87) and Articles of Iron or
Steel (HS73). Interestingly, these sectors are relatively more labor-intensive in Colombia, and
therefore they could be susceptible to disruptions connected to social distancing. Finally, only for
Coffee and Tea (HS08), Other textiles (HS63), and Jewelries (HS71) exports in value significantly
grew in the second quarter. Instead, in terms of the number of exporting firms, no product sectors

exhibit notable positive dynamics. During the third and fourth quarters of 2020, there is a rapid
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Figure Appx.3: The growth of the total number of exporters and the total value of exports by the
destination country for the four quarters of 2020. Orange bars represent negative growth and blue
bars positive growth. Destination countries are sorted from top to bottom accordingly to their
importance in the share of the number of exporters in 2019.

back to normality in both the growth of value exported and in the number of exporters’ growth
rate by sector. Figure Appx.6 shows the same figures for 2019, suggesting that in periods without
relevant shocks — such as the ones of the first quarter of 2020 — the changes in exports are also very

heterogeneous, but there are not such extreme changes.
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Figure Appx.4: The growth of the total number
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of exporters and the total value of exports by

sector for the four quarters of 2020. Orange bars represent export reductions and blue bars positive
export growth. Product sectors are sorted from top to bottom according to their importance in the
share of the number of exporters in 2019. Product sectors correspond to the chapters of the HS
code in parenthesis and the full name of the chapters is shortened to improve readability.
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Figure Appx.5: The growth of the total number of exporters and the total value of exports by
destination country for the first and the second quarters of 2019. Orange bars represent negative
growth and blue bars positive growth. Destination countries are sorted from top to bottom
accordingly with their importance in the share of number of exporters in 2019.
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Figure Appx.6: The growth of the total number of exporters and the total value of exports by sector
for the first and the second quarters of 2019. Orange bars represent export reductions and blue
bars positive export growth. Product sectors are sorted from top to bottom accordingly with their
importance in the share of number of exporters in 2019. Product sectors correspond to the chapters
of the HS-code in parenthesis, the full name of the chapters is shortened to improve readability.
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D Appendix: On the of convergence the T-Learner in
our scenario

The estimator &; = f! (Xito—1) — fO(Xi,tS_l) is a T-learner estimator (Kiinzel et al., 2019), where
the two potential outcome functions are estimated separately. While the T-learner lacks Neyman
orthogonality, it has been heuristically observed in the literature that when the two potential
outcome functions are estimated at heterogeneous rates, the overall estimation error of the T-learner
is often practically dominated by the slower component (Kiinzel et al., 2019; Wager and Athey,
2018; Curth and Van der Schaar, 2021). In particular, Curth and Van der Schaar (2021) formally
derive that the mean squared error (MSE) of the T-learner estimator is asymptotically bounded by
the sum of the squared errors of the two nuisance regressions, implying that the overall convergence
rate is determined by the slower component when the nuisance estimators converge at heterogeneous

rates.

In the following we want to show that the only threaten to identification is the SUM.

It is easy to see that & identifies the CATE if E[& (X¢,—1)] = 0 from Eq. 7.

In order to analyze the same for & we need to take an additional step and examine the differences
between SUM and SAM through the lens of empirical process theory, as discussed in Tsybakov and
Tsybakov (2009). Indeed, from Eq. 12, we observe that the main threat to identification arises
from the difference in prediction errors between SUM and SAM when considering the estimator a&.
The objective is to determine whether the convergence rates to the true functions f0 differ between
SUM and SAM, and if so, to identify which of the two converges more slowly, thereby posing a
greater threat to identification.

In the following discussion, (X1 ¢—1;Y14),..., (Xit—1;Yit), .. (Xnt—1;YN¢)) are assumed to be
iid. ?3. In what follows we will assume that temporal dependence does not induce cross-sectional
dependence in a ”"pooled cross-sectional” sense for providing the intuition **. Furthermore, we

will focus on estimation tasks for penalized regressions. We assume a moderate sparsity s in

33Notice that the analysis can be easily extended to the case of independent but not identically distributed
random variables following Singh (1975)

34The results can be extended to the panel case (Dehling and Philipp, 2002; Mirzaei, Kostic, Maurer,
et al., Mirzaei et al.; Okui and Yanagi, 2019). Specifically, since our estimation procedures for SUM and
SAM rely on different time periods, we should account for the fact that (X, Y;) follows a weakly dependent
stochastic process satisfying a strong mixing condition. Namely, the cross-sectional independence assumption
should be enriched by an a-mixing condition of the form:

ay = sup |P(A| B)— P(A)] =0 ask — oo. (18)
AEF,BEF:

where F; is the sigma-algebra generated by (X;,Y:). P(A) represents the probability that a firm’s
characteristics and outcome at time ¢, denoted as (X; ¢, Y; ), fall into a given set (S,T") without conditioning
on past values. P(A | B) represents the probability that (X, ¢, Y;¢) falls into (S,T'), given that in an earlier
period, the firm’s characteristics and outcome were in a different set (S’,77), i.e., (X -k, Yi—k) € (5", T").
This ensures that temporal dependence decays over time as k —the lag— grows, allowing empirical process
results to hold even when observations are not strictly i.i.d. (Drees and Rootzén, 2010). Moreover, it is
possible to show that a form of the Glivenko-Cantelli theorem is valid also for panel data (Okui and Yanagi,
2019). The major results of empirical process theory are reproduced if, additionally to the above, we assume
that (X,Y;) follow a weakly stationary process and that the estimation bias in time-dependent quantities
does not dominate asymptotic results.
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order to extend our results to LASSO, Ridge and ElasticNet types of models. In particular
O s 1FEC) || = n~ /% for 0 < w < 2. The reader is referred to Koltchinskii (2011) for further
details. Finally, notice that an advantage of the following study is that it adapts to nonparametric
models.

Given the mentioned assumptions and for the sake of clarity in the notation, we will refer to
(Xit—1,Yiy) as simply (X;,Y;) so that we can rewrite the potential outcomes as Yid = f4X;). In
what follows, we will assume that the variables at our disposal are sub-gaussian *°. We now define
the classes associated with SAM and SUM as

Fsam = {f : X — [0, 1] predicting Y from observed (X;,Y;')}
Fsum = {f : X — [0,1] predicting Y° from X; only (no observed labels)}

We briefly investigate the complexity of the latter classes in what follows. As aforementioned, given
Assumption 2, it is possible in our context to use fgow on Xopgo to estimate Yo, whose labels
are, however, unknown. Hence, although the estimation of fgow is achieved through supervised
learning, the validity of Y2%20 is guaranteed only if Assumption 2 holds. This is because the latter
task is inherently unsupervised, as the labels of Y2%20 remain unobserved. In other words, while the
SAM is directly supervised by the observed data (X;,Y;!), its function class Fsam is constrained to
fit the empirical distribution of observed outcomes, the SUM must approximate counterfactuals
without direct labels, meaning that its function space Fgunm must be broader to accommodate
all possible mappings from X to Y°. More formally, if the function classes are parameterized by
some hypothesis space O, the cardinality of F can be linked to the dimension of ©. Suppose:
FsamMm is parameterized by Ogan. and Fgym is parameterized by Ogun. Since the SUM does not
observe Y0 directly, its parameter space must include extra degrees of freedom to account for

unobserved variability. This means:

dim(@SUM) > dim(@SAM).

The latter is strictly related to the concept of complexity of Fsum and Fsam.

The complexity of a function class is quantified by its metric entropy, given by log N (e, F, L1(Q)),
where N (e, F,L1(Q)) is the covering number, i.e., the minimal number of functions required
to approximate all f € F within an error €. Since SUM must account for a broader range
of possible counterfactual relationships, its function space is necessarily larger, implying that
N(e, Fsum, L1(Q)) > N (e, Fsam, L1(Q)), and taking the logarithm yields

log N (e, Fsum, L1(Q)) > log N (e, Fsam, L1(Q))

Since we assumed moderate sparsity, we can be confident that the function classes of both SUM

and SAM are not excessively complex, ensuring that theoretical bounds can still be established.

35The latter assumption is not too much restrictive as it includes all normal random variables, all bounded
random variables and all random variables for which even moments exist and satisfy E[X?¥] < (221@7’6,3!!5% for
k=1,2,3,... and some parameter £ > 0.
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In the analysis of empirical risk minimization under complexity constraints, the convergence rate
of the estimator f to the true function fy is governed by the metric entropy of the function class
F. Given the metric entropy bound log N (0, F, | - ||) < Co~", for C > 0, classical results from
empirical process theory (see Sadhanala and Tibshirani (2019)) establish that the expected rate of
convergence satisfies:
If = foll7, = O(n=?/E)).

Applying this result to the function classes of SUM and SAM, we recover their respective

entropies as satisfying:

log N (8, Fsunt, || - ) > Csumd ™S, log N (8, Fsant, || - ||) < Csandsan,

Since SUM estimates counterfactuals without direct supervision, it must approximate a wider
range of functional relationships, leading to a function class Fsym with a larger covering number and
a lower complexity exponent wsym < wsam. Consequently, the corresponding rates of convergence

are:

I fsunt = foll2 = O(n=2/CHosondy i fopn — foll2 = O(n=2/ CHwsan)), (19)
Since wsym < wsaMm, it follows that:
2/ 2Ztwsum) 5, n_2/(2+wSAM)’

which formally confirms that the convergence rate of SUM is slower than that of SAM. We can

summarize all of this in a Lemma.

Lemma 1 (Identification Threat from the SUM under regularized ML). Consider the set up of
Section 2. Let fSAM and ngM denote the estimators obtained via penalized regression (e.g., LASSO,
Ridge) with moderate sparsity s, where inputs are i.i.d. sub-Gaussian. Let Fsan and Fsyy be the

corresponding function classes, with metric entropies satisfying:

log N (8, Fsum, || - ||) = Csumd™ “SM,

log N(0, Fsan, || - ||) < Csapd™ 54 for 0 < wgyy < wsam < 2.
Then the mean squared convergence rates of the two estimators are given by:
| fswar = fOlln = O/ ey | foang — fH7 = O(n=/ EFesan),
Consequently, the SUM estimator converges more slowly than the SAM estimator with

n—2/(2+wSUM) > n_2/(2+wSAM),

Proof Let F be a function class such that log N (4, F, | - ||n) < Co~* for some C' > 0 and
w € (0,2). Then standard empirical process theory (see Koltchinskii (2011)) yields the convergence
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rate:
If = foll = O(n=/G+w)),

Applying this to SAM and SUM yields:
| fsant = fHI5 = O~ Eresand) | fspy — fO3 = O(n~2/GFesu),

Since wsym < wsam, we have:
2 2

> )
2 + wsuMm 2 4+ WsAM

so the exponent in the rate for SUM is smaller, and the convergence rate is slower. Hence,

I fsum — fOI2 > || fsam — f1]2.0

E Appendix: Robustness checks with panel cross validation

and alternative ML methods

In this appendix, we report the results of a series of robustness checks that pursue a threefold goal:
(1) the robustness of our scenario in the case of a longer panel before the shock; (ii) the robustness
of our scenario when more machine learning algorithms than those given in the main text are used;
(iii) the robustness of our scenario when different performance metrics are used in the validation
step.

We start by combining the datasets that contain the relevant information on Colombian companies
from 2014 to 2018%°. Since we are dealing with a panel, the validation process is more complicated
than the strategy chosen in the main text. We consider two possible strategies for splitting the

panel:

1. The first possibility (panel-split 1) is to repeat the same approach as for Fabra et al. (2022).
Namely, take the features z;, to predict y;41 in the training, where £ =1,2,... ) K is rolling
and K is the size of the training. Then use xx 1 as validation to predict yx 1 using the
trained function.

To clearly distinguish between the structure of the dataset and the actual time of the modeled
behavior, we introduce the following notation. Let s denote the observation year, i.e. the
year in which observations are recorded in the dataset. Let ¢t = s+ 1 denote the effective year,
which represents the time period to which the outcome variable Y; refers. In our data set, the
outcome Y;, which was recorded in the year s, reflects the firm’s export behavior in the year

t. Instead, t = s applies to the characteristics. This means that we observe tuples (X;—s, Y2),

36To prepare the data set for the training and validation of the model, the data is first split into predictor
features and target variables for the training and validation set. Irrelevant columns, such as identifiers and
date-related fields, are removed from the predictors, while the target variable remains unchanged. Categorical
features are converted to numeric form using binary indicator variables and any missing values in the data
are filled in to ensure consistency. The numeric characteristics (except for the binary indicators) are then
transformed to obtain a consistent scale for all variables, usually by adjusting for a common central tendency
and dispersion. This standardization step ensures that all continuous features contribute equally during
model] training.
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where Y; encodes the behavior in the year s + 1. For the sake of simplicity, we consider a
generic prediction task with a fixed target year ¢ (e.g. 2016) and a fixed calendar month (e.g.
January). In this context, the training data is constructed from firms observed in the two
previous years s — 2 and s — 1, i.e. we use observations where the features X, o, X5_1 and
outcomes Y;_1,Ys. Since the export behavior in s is encoded in Y;_1, recorded in s — 1 and
accordingly linked to firm characteristics from the year s — 1, our data would in principle
allow us to learn a mapping from X to Y;. However, the model of Fabra et al. (2022) —
requires learning a mapping from X to Y; in both training and validation. To this end,
we have replaced the target Y; with the export behavior from the same year in which the
input features are recorded, i.e. Y. In practice, this means that the monthly values of Y; are
overwritten with those of Yy := Y;_1, forcing a common future behavior in the training data.
This trains the model to predict an imputed target — it learns the mapping X, — 37,5, where
the tilde means that Y; has been replaced by Y. The validation features correspond to Xy
for a fixed calendar month (e.g. January). The corresponding validation targets are Y;*7
To summarize, the model is trained on X; — ﬁ and evaluated on X; — Y;%%.

The procedure described above can be recursively generalized .

. The second strategy (panel-split 2) stays with the current version of the dataset, without
distinguishing between the observation year and the effective year, as in panel-split 1, noting
that (1) the trained model should predict the export results for the following year and (2)
the implementation is slightly different from that of Fabra et al. (2022). To be consistent
with Fabra et al. (2022), our training procedure rolls forward in time due to the way Y was
recorded in our dataset, but the variable used as Yj.4n corresponds to what Fabra et al.
(2022) labeled as Yyaiidation-

This strategy can be further subdivided into alternative data splitting schemes that fall into
two broad categories: those that exploit the temporal dimension of the dataset and those that
exploit the structure of the panel (i.e., both the cross-sectional and temporal dimensions).
Since the former approach is more commonly used in our reference literature (Cerqua and
Letta, 2020; Fabra et al., 2022), we follow this approach in our analysis. Accordingly, we
describe the latter here only briefly so as not to overburden the reader. Nevertheless, we
emphasize that a more comprehensive approach to training and cross-validation in panel
data should ideally also make use of the cross-sectional dimension. We leave this extension
to future research and refer the reader to the online appendix for a possible direction in this

regard.

37In order to create a consistent validation set, the inputs X, recorded in s = ¢ and the targets Y; recorded
in s — 1 are merged using an inner join on firm identifier and the calendar month.

38 As an illustration, consider the case where the target year is ¢ = 2016, which corresponds to an
observation year s = 2015, with data recorded in a fixed month (e.g. January). The training data is drawn
from the two previous years s = 2014 and s = 2015 using inputs X, and targets Y;. Following Fabra et al.
(2022), the target Y; is replaced by Y, i.e. by the export behavior from the same year as the input features.
Specifically, Y2916 is overwritten with monthly values from Y3015, which leads to an imputed target )72016.
The model is thus trained on Xsp15 — Y2016 and then applied to predict Yog17 from Xsgi6.

39For example, for 2017, we keep 2015 and 2016 in the training set, impute the corresponding values of
the export (i.e. Y of 2014 to 2015, Y of 2015 to 2016) and use X017 to predict Yap17 (i.e. Y corresponding
to 2016).
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The first strategy, which utilizes the temporal dimension, slightly modifies the Fabra et al.
(2022) procedure by performing a grid search approach. We call this strategy panel-split 2 (i).
The idea is to choose ex-ante a set of, say K1, possible combinations of hyperparameters
for the different ML algorithms (the subscript indicates that the number of hyperparameter
combinations depends on the ML algorithm). The process consists of training each of the
Ky, models in turn, following a ”year-forward chaining” approach. Let {to,t1,...,t7}
represent the available years in the dataset, where tg := ¢ — L is the start year and T is the
end year. At each step s, the training set includes all years {tg,t1,...,ts—1} to predict the
target variable in year t,, and the validation set consists of ¢5 to predict t541. For example, in
the first iteration, the model is trained with the input features X;, and the target variable y,
and then validated with the features X;, to predict y¢,. The hyperparameters are selected by
minimizing the RMSE of the validation predictions. In the following iterations, the training
set is expanded step by step: in iteration s the model is trained on {Xy,, Xy,,...,X¢,_, } to
predict {y¢,,¥t,,---, ¥t} and validated using X, to predict y;,,. This chaining process is
continued until the last year ¢7, recording the RMSEs (AUCs and BACCs) for each validation
step. The hyperparameters that result in the lowest overall RMSE across all validation sets
are selected as optimal.

Algorithm 1 shows an example with two machine learning models, LASSO and Ridge
regression, using a ”year-forward chaining” approach, where each model is evaluated for four
different regularization strengths (A € {1, A2, A3, As}). Assume that the data set spans three
years (2014, 2015, 2016) and predictions are made for the target variable of the following

year.
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Algorithm 1 Year-Forward Chaining for Hyperparameter Selection

Require: Dataset {(Xq, yt+1)}§£t0;
ML models M = {LASSO, Ridge};
Hyperparameters A = {A1, A2, A3, Ay}
1: for each model m € M do
for each A € A do
for iterationi=1to T — 1 do

2
3
4: Define training years: {to,t1,...,t;i—1}
5 Define validation year: t;

6

Train: Fit model m with A on

{(Xtovyt1)7 R (Xtifl’yti)}

7 Validate: Predict y,,, using Xy, (if yy, , is available)
8: Evaluate: Compute RMSE, AUC, BACC between y;,,, and yy, .,
9: Store performance metrics

10: end for

11:  end for

12: end for

13: for each model m € M do

14:  Aggregate validation metrics across iterations for each A € A

15:  Select A}, = argminy RMSE  mulative

16: end for

17: return Optimal hyperparameters {A[ ss50+ ARidge}

In the first iteration, the models are trained using the data from 2014 (Xg014 as input and
v2015 as target) and validated on 2015 (Xg015) to predict ya16. For each combination of
model (LASSO or Ridge) and A, the predictions are evaluated using the RMSE, AUC and
BACC and the results are recorded. Then the training set is extended by 2014 and 2015
(X2014, X2015 as input and y2015, Y2016 as target), while 2016 (Xgg16) is used for validation to
predict y2017. Again, the RMSE (AUC and BACC) is calculated for each model and each
combination of A and the results are recorded. At the end of these iterations, the RMSE
(AUC, BACC) values from all validation steps are aggregated for each model and each A
value. The best hyperparameters for LASSO and Ridge are determined by selecting the A

values that minimize the cumulative RMSE across all validation steps.

The procedure we used in our exercise is based on panel-split 2 (i) with the only difference that
the validation year is set to ¢7 (in our case the dataset containing the Xop17 and Ya15). We call
this strategy panel-split 2 (ii). In iteration s, the model is trained on {X¢,,..., X¢, o, Xep ) }
to predict {y¢,,¥t,,---,¥t, } and validated with X;, to predict y;,,,. This chaining process
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continues until the last year t7, recording the RMSEs for each validation step.

Once the optimal As are calculated for each month and each training size via the procedure
described above, we then estimate the RMSEs for each training size including the dataset
containing Xo017 and Yag1g??, in the training set with the selected As (model estimation).
This makes it possible to learn the optimal coefficients of the model based on the validated
As. We finally use the estimated model to test the predictions obtained for Yap19 using Xog1g
(and save the test errors) (Y-SUM placebo for 2019).

The use of panel-split 1 leads to unnecessary complexity, especially because the dependent
variable in our data set corresponds to the following year, which makes practical implementation
more difficult. In addition, the approach of Fabra et al. (2022) iteratively varies the validation year
across different splits. In our view, this strategy reduces the predictive power of the T-learner,
whose main goal is to accurately estimate the SUM for counterfactual inference. In contrast, setting
the validation set to Yag1g provides a more stable and targeted framework. Given the temporal
proximity between 2018 and 2019, using Y3018 for validation increases the likelihood that the
selected hyperparameters generalize well to Yag19, improving the estimation of the SUM function
relevant for the counterfactual prediction.

For these reasons, we have opted for a modified version of the strategy in Fabra et al. (2022), in
which the validation year remains fixed at Y2g18. This consideration has led us to adopt panel-split
2 (i), which addresses the limitations associated with panel-split 1. The reason why we used
panel-split 2 (i) and not panel-split 2 (i) is explained in more detail in the online appendix. The

results using panel-split 1 are available on request.

Results for panel case with alternative ML techniques

In this section, we report on the results we obtain when we apply the panel-split 2 (ii) approach.

Table Appx.3 shows the hyperparameter grid used for each ML method.

40This effectively means that the training set was constructed as follows:

e Training size 1: the training data contained X917 and Yag1s;

e Training size 2: the training data contained Xosg14, X2017 and Y2917, Yoo18;

e Training size 3: the training data contained Xog15, X2016, X2017 and Y216, Y2017, Y2018-

The training size 4 was not included coherently with the validation, whose maximum size is necessarily 3
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Model Hyperparameters

LASSO lambda: Values generated by combining:
- Coarse grid: log,,-spaced values in range [10™%, 10?] with 20 points,
- Fine grid: log;,-spaced values in range [1071, 10'] with 50 points,
- Unique combination of both grids.
Ridge Same as LASSO (lambda values)
RandomForest n_estimators: [25, 100, 200, 500],
maz._features: ['sqrt’, "log2’, None],
maz_depth: [None, 3, 5, 7, 10],
maz_leaf nodes: [3, 6, 9],
min_samples_split: [2, 8]
XGBoost subsample: (0.4, 0.5, 0.7, 0.9],
learning_rate: [0.05, 0.1, 0.3, 0.5, 0.9],
maz_depth: range(3, 8),
n_estimators: [100, 200]
SVM C': log,o-spaced values in range [1072, 10%],

kernel: [linear’, rbf’],

gamma: log-spaced values in range [1073, 10!

Table Appx.3: Tuned hyperparameters for different machine learning models.

Results are presented for training sets created from one, two or three years prior to a fixed
validation year. For further methodological details, the reader is referred to the previous section. A
more detailed analysis of how the performance of the regularization methods changes with different

training set sizes can be found in the online appendix.

Regularization techniques: LASSO and Ridge The following figure displays the difference
Y-SUM with different training sizes using RMSE as validation criterion:
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Figure Appx.7: Y-SUM using Logit-LASSO-CV for different training sizes: top: training size 1,
mid: training size 2, bottom: training size 3
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It is worth noting that in the main text, using standard cross-sectional cross-validation, we observe a
very similar distribution of test errors for the period January to March 2020. This same distribution
is also obtained when applying the SAM during the same period, indicating that the issue of bias

in specific regions of the distribution of treatment effects has been effectively addressed.

SVM The same exercise has been repeated for SVM.
Figure Appx.8 summarizes the results for the placebo in 2019 when SVM is used.

Tree based methods (RF, XGB, BART) The first of tree based methods presented is
RF. The hyperparameters for RF are chosen according to Probst et al. (2019). Figure Appx.9

summarizes the results for the placebo in 2019 when RF is used:
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Figure Appx.9: Y-SUM using RF for different training sizes for 2019 and 2020. Top

: training size
1, mid: training size 2, bottom: training size 3.

XGB results The following are the results for XGB:
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Figure Appx.10: Y-SUM using XGB for different training sizes for 2019 and 2020. Top: training
size 1, mid: training size 2, bottom: training size 3.

Remark Figures Appx.7-Appx.10 present the results for both the placebo case—where no
COVID-19 occurred—and for the year 2020. The estimator & was used because incorporating
additional lagged years can only improve the counterfactual prediction (i.e., the SUM) in our
context. Therefore, this is the only estimator tested. The results are consistent with the main

analysis and fall within the same range of values. No significant effects were detected in the placebo

4



case. Furthermore, not only are the CATE estimates aligned with those reported in the main text,
but the predictive performance of the various machine learning estimators is also comparable. A

detail of the performance of the results of the various ML methods is Tables Appx.4 and Appx.5.
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9.

Month Valid. SVM Test SVM Valid. RF Test RF Valid. XGB Test XGB Valid. LASSO Test LASSO Valid. Ridge Test Ridge Valid. Logit Test Logit
tr.size 1: 0.437 tr.size 1: 0.434 tr.size 1: 0.438 tr.size 1: 0.443 tr.size 1: 0.423 tr.size 1: 0.402 tr.size 1: 0.416 tr.size 1: 0.409 tr.size 1: 0.419 tr.size 1: 0.416 tr.size 1: 0.423 tr.size 1: 0.425
Jan tr.size 2: 0.435 tr.size 2: 0.433 tr.size 2: 0.436 tr.size 2: 0.440 tr.size 2: 0.424 tr.size 2: 0.401 tr.size 2: 0.417 tr.size 2: 0.406 tr.size 2: 0.411 tr.size 2: 0.410 tr.size 2: 0.413 tr.size 2: 0.415
tr.size 3: 0.433 tr.size 3: 0.430 tr.size 3: 0.437 tr.size 3: 0.438 tr.size 3: 0.423 tr.size 3: 0.400 tr.size 3: 0.415 tr.size 3: 0.404 tr.size 3: 0.412 tr.size 3: 0.405 tr.size 3: 0.424 tr.size 3: 0.426
tr.size 1:0.453 tr.size 1: 0.443 tr.size 1: 0.431 tr.size 1: 0.437 tr.size 1: 0.414 tr.size 1: 0.408 tr.size 1: 0.418 tr.size 1: 0.411 tr.size 1: 0.413 tr.size 1: 0.415 tr.size 1: 0.421 tr.size 1: 0.424
Feb tr.size 2: 0.448 tr.size 2: 0.445 tr.size 2: 0.429 tr.size 2: 0.434 tr.size 2: 0.410 tr.size 2: 0.406 tr.size 2: 0.415 tr.size 2: 0.405 tr.size 2: 0.403 tr.size 2: 0.405 tr.size 2: 0.416 tr.size 2: 0.420
tr.size 3: 0.423 tr.size 3: 0.425 tr.size 3: 0.428 tr.size 3: 0.434 tr.size 3: 0.410 tr.size 3: 0.403 tr.size 3: 0.410 tr.size 3: 0.406 tr.size 3: 0.405 tr.size 3: 0.409 tr.size 3: 0.417 tr.size 3: 0.419
tr.size 1:0.422 tr.size 1: 0.421 tr.size 1: 0.434 tr.size 1: 0.434 tr.size 1: 0.424 tr.size 1: 0.399 tr.size 1: 0.401 tr.size 1: 0.407 tr.size 1: 0.411 tr.size 1: 0.409 tr.size 1: 0.420 tr.size 1: 0.425
Mar tr.size 2: 0.420 tr.size 2: 0.418 tr.size 2: 0.430 tr.size 2: 0.433 tr.size 2: 0.413 tr.size 2: 0.396 tr.size 2: 0.414 tr.size 2: 0.406 tr.size 2: 0.408 tr.size 2: 0.411 tr.size 2: 0.421 tr.size 2: 0.424
tr.size 3: 0.411 tr.size 3: 0.420 tr.size 3: 0.430 tr.size 3: 0.431 tr.size 3: 0.407 tr.size 3: 0.396 tr.size 3: 0.398 tr.size 3: 0.500 tr.size 3: 0.409 tr.size 3: 0.412 tr.size 3: 0.418 tr.size 3: 0.421
tr.size 1: 0.455 tr.size 1: 0.443 tr.size 1: 0.430 tr.size 1: 0.489 tr.size 1: 0.404 tr.size 1: 0.472 tr.size 1: 0.418 tr.size 1: 0.402 tr.size 1: 0.404 tr.size 1: 0.406 tr.size 1: 0.413 tr.size 1: 0.420
Apr tr.size 2: 0.443 tr.size 2: 0.431 tr.size 2: 0.430 tr.size 2: 0.492 tr.size 2: 0.408 tr.size 2: 0.469 tr.size 2: 0.403 tr.size 2: 0.402 tr.size 2: 0.407 tr.size 2: 0.409 tr.size 2: 0.417 tr.size 2: 0.421
tr.size 3: 0.433 tr.size 3: 0.428 tr.size 3: 0..429 tr.size 3: 0.491 tr.size 3: 0.401 tr.size 3: 0.469 tr.size 3: 0.412 tr.size 3: 0.398 tr.size 3: 0.399 tr.size 3: 0.401 tr.size 3: 0.411 tr.size 3: 0.416
tr.size 1: 0.439 tr.size 1: 0.446 tr.size 1: 0.431 tr.size 1: 0.472 tr.size 1: 0.418 tr.size 1: 0.445 tr.size 1: 0.414 tr.size 1: 0.406 tr.size 1: 0.407 tr.size 1: 0.410 tr.size 1: 0.417 tr.size 1: 0.422
May tr.size 2: 0.440 tr.size 2: 0.444 tr.size 2: 0.429 tr.size 2: 0.473 tr.size 2: 0.416 tr.size 2: 0.445 tr.size 2: 0.415 tr.size 2: 0.404 tr.size 2: 0.408 tr.size 2: 0.411 tr.size 2: 0.422 tr.size 2: 0.423
tr.size 3: 0.437 tr.size 3: 0.432 tr.size 3: 0.428 tr.size 3: 0.472 tr.size 3: 0.419 tr.size 3: 0.445 tr.size 3: 0.412 tr.size 3: 0.402 tr.size 3: 0.401 tr.size 3: 0.404 tr.size 3: 0.421 tr.size 3: 0.425
tr.size 1: 0.457 tr.size 1: 0.454 tr.size 1: 0.433 tr.size 1: 0.456 tr.size 1: 0.415 tr.size 1: 0.424 tr.size 1: 0.410 tr.size 1: 0.404 tr.size 1: 0.407 tr.size 1: 0.410 tr.size 1: 0.412 tr.size 1: 0.418
Jun tr.size 2: 0.446 tr.size 2: 0.439 tr.size 2: 0.432 tr.size 2: 0.455 tr.size 2: 0.404 tr.size 2: 0.422 tr.size 2: 0.408 tr.size 2: 0.401 tr.size 2: 0.407 tr.size 2: 0.411 tr.size 2: 0.411 tr.size 2: 0.415
tr.size 3: 0.440 tr.size 3: 0.433 tr.size 3: 0.432 tr.size 3: 0.456 tr.size 3: 0.399 tr.size 3: 0.421 tr.size 3: 0.407 tr.size 3: 0.400 tr.size 3: 0.402 tr.size 3: 0.408 tr.size 3: 0.414 tr.size 3: 0.417
tr.size 1: 0.420 tr.size 1: 0.411 tr.size 1: 0.430 tr.size 1: 0.446 tr.size 1: 0.410 tr.size 1: 0.416 tr.size 1: 0.417 tr.size 1: 0.398 tr.size 1: 0.403 tr.size 1: 0.406 tr.size 1: 0.414 tr.size 1: 0.416
Jul tr.size 2: 0.422 tr.size 2: 0.420 tr.size 2: 0.429 tr.size 2: 0.446 tr.size 2: 0.404 tr.size 2: 0.415 tr.size 2: 0.421 tr.size 2: 0.397 tr.size 2: 0.400 tr.size 2: 0.404 tr.size 2: 0.410 tr.size 2: 0.414
tr.size 3: 0.417 tr.size 3: 0.418 tr.size 3: 0.433 tr.size 3: 0.446 tr.size 3: 0.403 tr.size 3: 0.413 tr.size 3: 0.417 tr.size 3: 0.394 tr.size 3: 0.406 tr.size 3: 0.408 tr.size 3: 0.408 tr.size 3: 0.410
tr.size 1: 0.443 tr.size 1: 0.434 tr.size 1: 0.430 tr.size 1: 0.443 tr.size 1: 0.424 tr.size 1: 0.413 tr.size 1: 0.414 tr.size 1: 0.403 tr.size 1: 0.405 tr.size 1: 0.410 tr.size 1: 0.413 tr.size 1: 0.415
Aug tr.size 2: 0.435 tr.size 2: 0.433 tr.size 2: 0.428 tr.size 2: 0.441 tr.size 2: 0.444 tr.size 2: 0.412 tr.size 2: 0.413 tr.size 2: 0.401 tr.size 2: 0.403 tr.size 2: 0.409 tr.size 2: 0.411 tr.size 2: 0.417
tr.size 3: 0.430 tr.size 3: 0.433 tr.size 3: 0.427 tr.size 3: 0.441 tr.size 3: 0.428 tr.size 3: 0.410 tr.size 3: 0.411 tr.size 3: 0.402 tr.size 3: 0.405 tr.size 3: 0.407 tr.size 3: 0.414 tr.size 3: 0.419
tr.size 1: 0.413 tr.size 1: 0.403 tr.size 1: 0.429 tr.size 1: 0.437 tr.size 1: 0.410 tr.size 1: 0.409 tr.size 1: 0.409 tr.size 1: 0.403 tr.size 1: 0.403 tr.size 1: 0.405 tr.size 1: 0.411 tr.size 1: 0.413
Sep tr.size 2: 0.410 tr.size 2: 0.400 tr.size 2: 0.428 tr.size 2: 0.436 tr.size 2: 0.405 tr.size 2: 0.408 tr.size 2: 0.410 tr.size 2: 0.401 tr.size 2: 0.404 tr.size 2: 0.408 tr.size 2: 0.414 tr.size 2: 0.419
tr.size 3: 0.411 tr.size 3: 0.412 tr.size 3: 0.428 tr.size 3: 0.436 tr.size 3: 0.405 tr.size 3: 0.407 tr.size 3: 0.409 tr.size 3: 0.400 tr.size 3: 0.400 tr.size 3: 0.403 tr.size 3: 0.408 tr.size 3: 0.412
tr.size 1: 0.412 tr.size 1: 0.402 tr.size 1: 0.433 tr.size 1: 0.445 tr.size 1: 0.419 tr.size 1: 0.411 tr.size 1: 0.410 tr.size 1: 0.405 tr.size 1: 0.408 tr.size 1: 0.410 tr.size 1: 0.417 tr.size 1: 0.425
Oct tr.size 2: 0.411 tr.size 2: 0.404 tr.size 2: 0.433 tr.size 2: 0.444 tr.size 2: 0.422 tr.size 2: 0.411 tr.size 2: 0.411 tr.size 2: 0.404 tr.size 2: 0.409 tr.size 2: 0.411 tr.size 2: 0.413 tr.size 2: 0.424
tr.size 3: 0.414 tr.size 3: 0.402 tr.size 3: 0.432 tr.size 3: 0.443 tr.size 3: 0.408 tr.size 3: 0.410 tr.size 3: 0.411 tr.size 3: 0.403 tr.size 3: 0.403 tr.size 3: 0.405 tr.size 3: 0.415 tr.size 3: 0.422
tr.size 1: 0.436 tr.size 1: 0.421 tr.size 1: 0.435 tr.size 1: 0.436 tr.size 1: 0.414 tr.size 1: 0.410 tr.size 1: 0.413 tr.size 1: 0.405 tr.size 1: 0.406 tr.size 1: 0.409 tr.size 1: 0.415 tr.size 1: 0.418
Nov tr.size 2: 0.432 tr.size 2: 0.411 tr.size 2: 0.434 tr.size 2: 0.435 tr.size 2: 0.408 tr.size 2: 0.405 tr.size 2: 0.411 tr.size 2: 0.405 tr.size 2: 0.405 tr.size 2: 0.409 tr.size 2: 0.414 tr.size 2: 0.416
tr.size 3: 0.425 tr.size 3: 0.412 tr.size 3: 0.434 tr.size 3: 0.434 tr.size 3: 0.401 tr.size 3: 0.403 tr.size 3: 0.411 tr.size 3: 0.403 tr.size 3: 0.405 tr.size 3: 0.408 tr.size 3: 0.412 tr.size 3: 0.415
tr.size 1: 0.450 tr.size 1: 0.455 tr.size 1: 0.432 tr.size 1: 0.436 tr.size 1: 0.413 tr.size 1: 0.407 tr.size 1: 0.415 tr.size 1: 0.406 tr.size 1: 0.410 tr.size 1: 0.413 t: e 1: 0.417 tr.size 1: 0.422
Dec tr.size 2: 0.445 tr.size 2: 0.440 tr.size 2: 0.429 tr.size 2: 0.435 tr.size 2: 0.414 tr.size 2: 0.406 tr.size 2: 0.414 tr.size 2: 0.405 tr.size 2: 0.409 tr.size 2: 0.411 tr.size 2: 0.418 tr.size 2: 0.425
tr.size 3: 0.430 tr.size 3: 0.431 tr.size 3: 0.428 tr.size 3: 0.435 tr.size 3: 0.403 tr.size 3: 0.405 tr.size 3: 0.414 tr.size 3: 0.404 tr.size 3: 0.405 tr.size 3: 0.409 tr.size 3: 0.415 tr.size 3: 0.420
tr.size 1: 0.436 tr.size 1: 0.430 tr.size 1: 0.432 tr.size 1: 0.448 tr.size 1: 0.415 tr.size 1: 0.418 tr.size 1: 0.413 tr.size 1: 0.404 tr.size 1: 0.410 tr.size 1: 0.411 tr.size 1: 0.414 tr.size 1: 0.422
Overall tr.size 2: 0.432 tr.size 2: 0.426 tr.size 2: 0.430 tr.size 2: 0.447 tr.size 2: 0.414 tr.size 2: 0.416 tr.size 2: 0.412 tr.size 2: 0.403 tr.size 2: 0.408 tr.size 2: 0.413 tr.size 2: 0.412 tr.size 2: 0.417
tr.size 3: 0.425 tr.size 3: 0.414 tr.size 3: 0.431 tr.size 3: 0.446 tr.size 3: 0.408 tr.size 3: 0.416 tr.size 3: 0.409 tr.size 3: 0.410 tr.size 3: 0.404 tr.size 3: 0.410 tr.size 3: 0.413 tr.size 3: 0.416

Table Appx.4: RMSE for the different ML methods

in the

validation and test set for the panel cross-validation for 2020.



L.

Month Valid. SVM Test SVM Valid. RF Test RF Valid. XGB Test XGB Valid. LASSO Test LASSO Valid. Ridge Test Ridge Valid. Logit Test Logit
tr.size 1: 0.743 tr.size 1: 0.733 tr.size 1: 0.818 tr.size 1: 0.803 tr.size 1: 0.793 tr.size 1: 0.832 tr.size 1: 0.826 tr.size 1: 0.826 tr.size 1: 0.788 tr.size 1: 0.789 tr.size 1: 0.674 tr.size 1: 0.677
Jan tr.size 2: 0.752 tr.size 2: 0.745 tr.size 2: 0.823 tr.size 2: 0.809 tr.size 2: 0.787 tr.size 2: 0.837 tr.size 2: 0.827 tr.size 2: 0.830 tr.size 2: 0.793 tr.size 2: 0.795 tr.size 2: 0.688 tr.size 2: 0.685
tr.size 3: 0.755 tr.size 3: 0.754 tr.size 3: 0.808 tr.size 3: 0.816 tr.size 3: 0.791 tr.size 3: 0.838 tr.size 3: 0.818 tr.size 3: 0.831 tr.size 3: 0.795 tr.size 3: 0.802 tr.size 3: 0.694 tr.size 3: 0.701
tr.size 1: 0.733 tr.size 1: 0.722 tr.size 1: 0.784 tr.size 1: 0.779 tr.size 1: 0.794 tr.size 1: 0.810 tr.size 1: 0.821 tr.size 1: 0.806 tr.size 1: 0.802 tr.size 1: 0.807 tr.size 1: 0.706 tr.size 1: 0.710
Feb tr.size 2: 0.724 tr.size 2: 0.714 tr.size 2: 0.805 tr.size 2: 0.794 tr.size 2: 0.805 tr.size 2: 0.814 tr.size 2: 0.826 tr.size 2: 0.815 tr.size 2: 0.804 tr.size 2: 0.810 tr.size 2: 0.723 tr.size 2: 0.717
tr.size 3: 0.730 tr.size 3: 0.725 tr.size 3: 0.804 tr.size 3: 0.793 tr.size 3: 0.804 tr.size 3: 0.821 tr.size 3: 0.821 tr.size 3: 0.816 tr.size 3: 0.811 tr.size 3: 0.816 tr.size 3: 0.755 tr.size 3: 0.763
tr.size 1: 0.710 tr.size 1: 0.712 tr.size 1: 0.794 tr.size 1: 0.822 tr.size 1: 0.779 tr.size 1: 0.830 tr.size 1: 0.839 tr.size 1: 0.816 tr.size 1: 0.809 tr.size 1: 0.818 tr.size 1: 0.711 tr.size 1: 0.708
Mar tr.size 2: 0.732 tr.size 2: 0.720 tr.size 2: 0.807 tr.size 2: 0.811 tr.size 2: 0.797 tr.size 2: 0.837 tr.size 2: 0.840 tr.size 2: 0.819 tr.size 2: 0.814 tr.size 2: 0.821 tr.size 2: 0.724 tr.size 2: 0.722
tr.size 3: 0.736 tr.size 3: 0.733 tr.size 3: 0.802 tr.size 3: 0.815 tr.size 3: 0.808 tr.size 3: 0.837 tr.size 3: 0.842 tr.size 3: 0.500 tr.size 3: 0.500 tr.size 3: 0.500 tr.size 3: 0.500 tr.size 3: 0.500
tr.size 1: 0.714 tr.size 1: 0.700 tr.size 1: 0.820 tr.size 1: 0.786 tr.size 1: 0.819 tr.size 1: 0.787 tr.size 1: 0.821 tr.size 1: 0.828 tr.size 1: 0.823 tr.size 1: 0.822 tr.size 1: 0.790 tr.size 1: 0.788
Apr tr.size 2: 0.715 tr.size 2: 0.711 tr.size 2: 0.811 tr.size 2: 0.784 tr.size 2: 0.813 tr.size 2: 0.778 tr.size 2: 0.825 tr.size 2: 0.827 tr.size 2: 0.826 tr.size 2: 0.824 tr.size 2: 0.801 tr.size 2: 0.800
tr.size 3: 0.722 tr.size 3: 0.710 tr.size 3: 0.814 tr.size 3: 0.782 tr.size 3: 0.826 tr.size 3: 0.792 tr.size 3: 0.826 tr.size 3: 0.835 tr.size 3: 0.833 tr.size 3: 0.830 tr.size 3: 0.801 tr.size 3: 0.802
tr.size 1: 0.702 tr.size 1: 0.678 tr.size 1: 0.813 tr.size 1: 0.823 tr.size 1: 0.791 tr.size 1: 0.823 tr.size 1: 0.824 tr.size 1: 0.821 tr.size 1: 0.818 tr.size 1: 0.821 tr.size 1: 0.731 tr.size 1: 0.733
May tr.size 2: 0.722 tr.size 2: 0.702 tr.size 2: 0.811 tr.size 2: 0.823 tr.size 2: 0.794 tr.size 2: 0.827 tr.size 2: 0.826 tr.size 2: 0.823 tr.size 2: 0.811 tr.size 2: 0.818 tr.size 2: 0.743 tr.size 2: 0.748
tr.size 3: 0.718 tr.size 3: 0.700 tr.size 3: 0.807 tr.size 3: 0.820 tr.size 3: 0.793 tr.size 3: 0.830 tr.size 3 :0.824 tr.size 3: 0.825 tr.size 3: 0.823 tr.size 3: 0.828 tr.size 3: 0.750 tr.size 3: 0.757
tr.size 1: 0.745 tr.size 1: 0.724 tr.size 1: 0.812 tr.size 1: 0.804 tr.size 1: 0.798 tr.size 1: 0.816 tr.size 1: 0.830 tr.size 1: 0.821 tr.size 1: 0.820 tr.size 1: 0.818 tr.size 1: 0.750 tr.size 1: 0.744
Jun tr.size 2: 0.743 tr.size 2: 0.732 tr.size 2: 0.804 tr.size 2: 0.799 tr.size 2: 0.820 tr.size 2: 0.820 tr.size 2: 0.834 tr.size 2: 0.826 tr.size 2: 0.823 tr.size 2: 0.820 tr.size 2: 0.753 tr.size 2: 0.751
tr.size 3: 0.733 tr.size 3: 0.745 tr.size 3: 0.799 tr.size 3: 0.790 tr.size 3: 0.827 tr.size 3: 0.820 tr.size 3: 0.833 tr.size 3: 0.828 tr.size 3: 0.830 tr.size 3: 0.828 tr.size 3: 0.758 tr.size 3: 0.753
tr.size 1: 0.738 tr.size 1: 0.735 tr.size 1: 0.828 tr.size 1: 0.807 tr.size 1: 0.803 tr.size 1: 0.820 tr.size 1: 0.815 tr.size 1: 0.837 tr.size 1: 0.832 tr.size 1: 0.830 tr.size 1: 0.744 tr.size 1: 0.743
Jul tr.size 2: 0.758 tr.size 2: 0.745 tr.size 2: 0.821 tr.size 2: 0.809 tr.size 2: 0.820 tr.size 2: 0.823 tr.size 2: 0.818 tr.size 2: 0.839 tr.size 2: 0.833 tr.size 2: 0.833 tr.size 2: 0.754 tr.size 2: 0.750
tr.size 3: 0.777 tr.size 3: 0.760 tr.size 3: 0.795 tr.size 3: 0.806 tr.size 3: 0.823 tr.size 3: 0.825 tr.size 3: 0.817 tr.size 3: 0.839 tr.size 3: 0.840 tr.size 3: 0.842 tr.size 3: 0.756 tr.size 3: 0.754
tr.size 1: 0.802 tr.size 1: 0.773 tr.size 1: 0.818 tr.size 1: 0.807 tr.size 1: 0.783 tr.size 1: 0.819 tr.size 1: 0.828 tr.size 1: 0.822 tr.size 1: 0.819 tr.size 1: 0.815 tr.size 1: 0.753 tr.size 1: 0.751
Aug tr.size 2: 0.792 tr.size 2: 0.780 tr.size 2: 0.814 tr.size 2: 0.803 tr.size 2: 0.752 tr.size 2: 0.821 tr.size 2: 0.827 tr.size 2: 0.824 tr.size 2: 0.822 tr.size 2: 0.820 tr.size 2: 0.757 tr.size 2: 0.753
tr.size 3: 0.812 tr.size 3: 0.783 tr.size 3: 0.817 tr.size 3: 0.800 tr.size 3: 0.775 tr.size 3: 0.824 tr.size 3: 0.827 tr.size 3: 0.824 tr.size 3: 0.827 tr.size 3: 0.823 tr.size 3: 0.801 tr.size 3: 0.798
tr.size 1: 0.720 tr.size 1: 0.723 tr.size 1: 0.810 tr.size 1: 0.808 tr.size 1: 0.803 tr.size 1: 0.817 tr.size 1: 0.831 tr.size 1: 0.824 tr.size 1: 0.820 tr.size 1: 0.811 tr.size 1: 0.765 tr.size 1: 0.761
Sep tr.size 2: 0.744 tr.size 2: 0.734 tr.size 2: 0.804 tr.size 2: 0.798 tr.size 2: 0.812 tr.size 2: 0.819 tr.size 2: 0.834 tr.size 2: 0.825 tr.size 2: 0.822 tr.size 2: 0.815 tr.size 2: 0.777 tr.size 2: 0.769
tr.size 3: 0.767 tr.size 3: 0.745 tr.size 3: 0.803 tr.size 3: 0.795 tr.size 3: 0.815 tr.size 3: 0.820 tr.size 3: 0.834 tr.size 3: 0.827 tr.size 3: 0.827 tr.size 3: 0.822 tr.size 3: 0.798 tr.size 3: 0.790
tr.size 1: 0.711 tr.size 1: 0.718 tr.size 1: 0.821 tr.size 1: 0.785 tr.size 1: 0.793 tr.size 1: 0.815 tr.size 1: 0.827 tr.size 1: 0.829 tr.size 1: 0.821 tr.size 1: 0.818 tr.size 1: 0.745 tr.size 1: 0.740
Oct tr.size 2: 0.731 tr.size 2: 0.711 tr.size 2: 0.820 tr.size 2: 0.790 tr.size 2: 0.785 tr.size 2: 0.815 tr.size 2: 0.831 tr.size 2: 0.831 tr.size 2: 0.826 tr.size 2: 0.820 tr.size 2: 0.755 tr.size 2: 0.749
tr.size 3: 0.728 tr.size 3: 0.737 tr.size 3: 0.816 tr.size 3: 0.789 tr.size 3: 0.818 tr.size 3: 0.818 tr.size 3: 0.831 tr.size 3: 0.833 tr.size 3: 0.830 tr.size 3: 0.822 tr.size 3: 0.783 tr.size 3: 0.776
tr.size 1: 0.689 tr.size 1: 0.677 tr.size 1: 0.804 tr.size 1: 0.817 tr.size 1: 0.801 tr.size 1: 0.812 tr.size 1: 0.823 tr.size 1: 0.823 tr.size 1: 0.811 tr.size 1: 0.808 tr.size 1: 0.769 tr.size 1: 0.761
Nov tr.size 2: 0.687 tr.size 2: 0.723 tr.size 2: 0.797 tr.size 2: 0.805 tr.size 2: 0.811 tr.size 2: 0.824 tr.size 2: 0.826 tr.size 2: 0.820 tr.size 2: 0.822 tr.size 2: 0.815 tr.size 2: 0.772 tr.size 2: 0.766
tr.size 3: 0.704 tr.size 3: 0.717 tr.size 3: 0.793 tr.size 3: 0.802 tr.size 3: 0.827 tr.size 3: 0.828 tr.size 3: 0.828 tr.size 3: 0.823 tr.size 3: 0.822 tr.size 3: 0.820 tr.size 3: 0.775 tr.size 3: 0.770
tr.size 1: 0.632 tr.size 1: 0.598 tr.size 1: 0.812 tr.size 1: 0.803 tr.size 1: 0.798 tr.size 1: 0.817 tr.size 1: 0.819 tr.size 1: 0.820 tr.size 1: 0.815 tr.size 1: 0.811 t: : 0.744 tr.size 1: 0.738
Dec tr.size 2: 0.656 tr.size 2: 0.643 tr.size 2: 0.809 tr.size 2: 0.795 tr.size 2: 0.797 tr.size 2: 0.819 tr.size 2: 0.822 tr.size 2: 0.820 tr.size 2: 0.816 tr.size 2: 0.811 tr.size 2: 0.748 tr.size 2: 0.744
tr.size 3: 0.697 tr.size 3: 0.645 tr.size 3: 0.810 tr.size 3: 0.797 tr.size 3: 0.820 tr.size 3: 0.821 tr.size 3: 0.822 tr.size 3: 0.821 tr.size 3: 0.820 tr.size 3: 0.818 tr.size 3: 0.755 tr.size 3: 0.749
tr.size 1: 0.720 tr.size 1: 0.710 tr.size 1: 0.811 tr.size 1: 0.799 tr.size 1: 0.795 tr.size 1: 0.810 tr.size 1: 0.824 tr.size 1: 0.821 tr.size 1: 0.814 tr.size 1: 0.810 tr.size 1: 0.733 tr.size 1: 0.732
Overall tr.size 2: 0.701 tr.size 2: 0.700 tr.size 2: 0.811 tr.size 2: 0.795 tr.size 2: 0.798 tr.size 2: 0.815 tr.size 2: 0.827 tr.size 2: 0.824 tr.size 2: 0.815 tr.size 2: 0.811 tr.size 2: 0.744 tr.size 2: 0.742
tr.size 3: 0.755 tr.size 3: 0.731 tr.size 3: 0.806 tr.size 3: 0.796 tr.size 3: 0.810 tr.size 3: 0.817 tr.size 3: 0.826 tr.size 3: 0.806 tr.size 3: 0.801 tr.size 3: 0.800 tr.size 3: 0.694 tr.size 3: 0.691

Table Appx.5: AUC for the different ML methods in the validation and test set for the panel cross-validation for 2020.



F An overview of the alternative CATE estimators

The BLP, GATEs and CLAN analysis we presented has been performed by using the CATEs
estimated by using various meta-learners and the Generalized Random Forests (CFs) method. CFs
modifies a particular standard (predictive) machine learning method (Random Forests) so that it
directly targets the estimation of the CATE. Instead, meta-learners operate through a multi-step
procedure that break down the task of estimating CATE into several smaller sub-problems that can
be addressed using any standard (predictive) machine learning technique. They typically involve

the following steps:

1. Estimation of nuisance parameters: auxiliary components such as the the propensity scores

are estimated using machine learning algorithms.

2. Construction of an objective function: The estimated nuisance components are then used
to construct a tailored minimization problem whose solution targets the CATE function.
This step is designed to isolate the heterogeneity in treatment effects while accounting for

confounding.

3. Solution via machine learning: The resulting minimization problem is solved via machine

learning.

4. Prediction of CATEs: Finally, the learned model is used to generate predictions of the CATE

for each observational unit, thus enabling individualized causal effect estimation.

The meta-learners we have used are the S-Learner, the T-Learner, the R-Learner and the

DR-Learner. They are all based on the assumption of strong ignorability. We will provide a brief
overview in what follows. m(1,z) denotes the conditional mean function under treatment, m(0, x)
the conditional mean function in absence of treatment, and e(X) the propensity score.
The first meta-learner we explore is the S-Learner. It fits a single model in which the observed
outcome is modeled as a function of the covariates and the treatment indicator variable. The
resulting model is then used to obtain two predictions for each subject: under treatment and
control. The CATE is then estimated by taking the differences between the two predictions:
As(z) = m(1,z) — m(0,z). Instead, the T-Learner employs two different models estimated
separately on the treated and control samples, and then the CATE is obtained as a difference, as
in the S-Learner.

The R-Learner, introduced by Nie and Wager (2021), builds on the partially linear model while
allowing for covariate-specific treatment effects. In this setting, the potential outcome model is given
by YP = A(X)D+g(X)+UP, with E[UP | D, X] = 0, which implies that the observed outcome
satisfies Y = DA(X) + g(X) + UP. By defining the outcome regression function m(X) := E[Y | X],

the model can be transformed into a residualized form:

Y —m(X) = AX)(D —e(X)) + UP.
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This motivates the R-Learner objective:

where the nuisance parameters m(X) and é(X) are estimated using high-quality machine learning
methods, typically via cross-fitting *! (Nie and Wager, 2021).

When one does not wish to impose linearity on A(X), the R-Learner objective can be rewritten as

N (X 2
A™Y(X) = arg mAinZ(Di — é(X;))? (;—6(())5:)) - A(Xi)> :

i=1
This representation highlights that any supervised learning algorithm capable of handling weighted
minimization problems can be employed (e.g. neural networks, random forests, and gradient

boosting among others). In this formulation, the weights are (D; — é(X;))?, the pseudo-outcome is
Yi—m(X5)
D;—é(X;)
The DR-Learner, introduced by Kennedy et al. (2020), constructs a pseudo-outcome in the first

, and the original covariates X are used as features.

stage, defined as

L DY —im(1,X)) (1= D)(Y — (0, X))
&(X) 1— é(X) ’

weighted residuals

Yare = m(1, X) — m(0, X)

Vv
outcome predictions

similarly to Eq. (17) and targets the CATE function through the conditional expectation
Alz) =E [?ATE | X = x] .

Since E[Y’ATE | X] is a conditional expectation function of random variable, it can be approximated
using standard supervised learning techniques. The DR-Learner uses this pseudo-outcome as the

dependent variable in a generic machine learning regression:

The Generalized Random Forests (CFs) estimator cannot be properly considered a Meta-learner
because it alters a specific ML method in such a way that it estimates the CATE. The development of
Generalized Random Forests (CFs) has evolved through multiple stages. The Generalized Random

41A simple case arises, for instance, if we model the CATE as a linear function A(X) = X'3, the

minimization becomes N

. N2

B = argmin ) (¥ — () - X{8).

i=1

where X; = (D; — é(X;))X; are the so-called modified or pseudo-covariates. The estimated CATE is then
given by A™(z) = 2/, noting that this differs from X 3", In this case, obtaining 3™ reduces to a standard
regression of the residualized outcome on the modified covariates, and shrinkage estimators such as Lasso

can be readily applied. Importantly, the nuisance parameters can still be estimated using non-linear machine
learning methods
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Forest introduced by Wager and Athey (2018) is constructed as an ensemble of Causal Trees and
is primarily designed for experimental settings. Subsequently, Athey et al. (2019) extended this
approach by proposing an approximation to the splitting rule of Causal Trees for binary random
treatments, while also generalizing the method to observational settings and continuous treatments.
Conceptually, modern Generalized Random Forests estimate CATEs via a localized, individualized

residual-on-residual regression of the form

N
Al(z) = argmin {Z mi(a) (Y — (X)) — Az)(Ds — é(Xi))]Z} ;
i=1
where 7;(x) denotes the frequency with which the i-th training sample falls into the same leaf as
the target sample x. This procedure represents a localized version of the partially linear estimator,
with the nuisance components m(X) and é(X) being estimated in a preliminary step, typically
through cross-fitting.
Finally, in the main text, for comparability with CFs, we use Random Forest in steps 1 and 3
of the meta-learners described above.

GATES estimates from January to December 2020 are summarized in Figure Appx.11.
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Figure Appx.11: GATES estimates from January to December 2020. The results are shown for
the four quartiles according to CATE. In each graph, the colored bars are from left to right for
Generalized Random Forest (orange), DR-learner (purple), R-learner (green), S-learner (red) and
T-learner (blue).
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G DML AIPW estimator
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Figure Appx.12: Double Machine Learning (DML) AIPW estimates (with 5-fold cross-fitting and
nuisance parameters estimated with Generalized Random Forest) from January to December 2020.
ATEy, .y refers to the ATE estimated by considering the combined cohort of treated (firms
in t5) and control firms (firms in #5_1) as a unique sample. Notice also that ATT = ATy, ;
because all the treated units are in ts.
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H Estimated Propensity Scores

The propensity score is defined in equation (3) as P(D; g4, +,—1} = UX; (r,—1,4,—2}) = e(Xi {t,—1,6,-2});
where D; ; 1.} 18 a dummy variable indicating whether an observation belongs to the treated
group or to the control group, and X;(; 14, 2} are the corresponding explanatory variables.
Therefore, the propensity score refers to the conditional probability of belonging to the cohort of
firms observed in ¢ — s considering the unique sample that combines the cohort of treated (firms
observed in t4) and the cohort of control firms (firms observed in ¢5_1). Following the methodology
of Chernozhukov et al. (2018), a K-fold cross-fitting strategy is employed to estimate this quantity

without overfitting and Generalized Random Forest Lerner is used.
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Figure Appx.13: Propensity scores estimates from January to December using 5-Folds DML-ATPW
based on Generalized Random Forest.

84



	Introduction
	Methodological framework
	Our Causal ML setup
	Treatment effect heterogeneity analysis
	Comparison with Generic ML

	Data and Dependent Variable
	Control Variables

	Results
	Selection of the machine learning algorithm
	Evaluation of the COVID-19 effect
	Heterogeneity of the COVID-19 effect on Colombian exporters
	Estimations based on Y-SUM
	Validation of the CATE models

	Concluding discussion
	Appendix - The Colombian economy amidst the COVID-19 crisis
	Appendix - Data
	Appendix - Descriptive Statistics
	Appendix: On the of convergence the T-Learner in our scenario
	Appendix: Robustness checks with panel cross validation and alternative ML methods
	An overview of the alternative CATE estimators
	DML AIPW estimator
	Estimated Propensity Scores

