
Introduction to LLM for predictions in
Economics: An example with LABOR-LLM

(Athey et al., 2024)

Federico Nutarelli

1 IMT School for Advanced Studies Lucca, Visiting TSE, MIT Sloan

0/ 102

1/ 102

Introduction

▶ Who am I? (i) Enthusiast of causal Machine-Learning and Empirical IO,
(ii) a slides reader;

▶ Who am I NOT? (i) a Labor economist; (ii) a synthetic person in slides
(iii) a coherent persons in punctuation and aesthetic of slides (iv)
someone that stick with timings in lectures (work in progress, do not copy
my style in presentations);

▶ Why am I here? To hopefully provide you with a tool for Labor related
research questions;

▶ What are these slides about? A very simple introduction to LLMs +
the way to use transformers (GPT architecture) to predict next job.
Athey et al. (2024) use old GPTs but similar structure of modern (but no
thinking mechanism);

▶ What are these slides NOT about? The very formal mathematical
structure of transformers (just intro).

1/ 102

Introduction

▶ Who am I? (i) Enthusiast of causal Machine-Learning and Empirical IO,
(ii) a slides reader;

▶ Who am I NOT? (i) a Labor economist; (ii) a synthetic person in slides
(iii) a coherent persons in punctuation and aesthetic of slides (iv)
someone that stick with timings in lectures (work in progress, do not copy
my style in presentations);

▶ Why am I here? To hopefully provide you with a tool for Labor related
research questions;

▶ What are these slides about? A very simple introduction to LLMs +
the way to use transformers (GPT architecture) to predict next job.
Athey et al. (2024) use old GPTs but similar structure of modern (but no
thinking mechanism);

▶ What are these slides NOT about? The very formal mathematical
structure of transformers (just intro).

1/ 102

Introduction

▶ Who am I? (i) Enthusiast of causal Machine-Learning and Empirical IO,
(ii) a slides reader;

▶ Who am I NOT? (i) a Labor economist; (ii) a synthetic person in slides
(iii) a coherent persons in punctuation and aesthetic of slides (iv)
someone that stick with timings in lectures (work in progress, do not copy
my style in presentations);

▶ Why am I here? To hopefully provide you with a tool for Labor related
research questions;

▶ What are these slides about? A very simple introduction to LLMs +
the way to use transformers (GPT architecture) to predict next job.
Athey et al. (2024) use old GPTs but similar structure of modern (but no
thinking mechanism);

▶ What are these slides NOT about? The very formal mathematical
structure of transformers (just intro).

1/ 102

Introduction

▶ Who am I? (i) Enthusiast of causal Machine-Learning and Empirical IO,
(ii) a slides reader;

▶ Who am I NOT? (i) a Labor economist; (ii) a synthetic person in slides
(iii) a coherent persons in punctuation and aesthetic of slides (iv)
someone that stick with timings in lectures (work in progress, do not copy
my style in presentations);

▶ Why am I here? To hopefully provide you with a tool for Labor related
research questions;

▶ What are these slides about? A very simple introduction to LLMs +
the way to use transformers (GPT architecture) to predict next job.
Athey et al. (2024) use old GPTs but similar structure of modern (but no
thinking mechanism);

▶ What are these slides NOT about? The very formal mathematical
structure of transformers (just intro).

1/ 102

Introduction

▶ Who am I? (i) Enthusiast of causal Machine-Learning and Empirical IO,
(ii) a slides reader;

▶ Who am I NOT? (i) a Labor economist; (ii) a synthetic person in slides
(iii) a coherent persons in punctuation and aesthetic of slides (iv)
someone that stick with timings in lectures (work in progress, do not copy
my style in presentations);

▶ Why am I here? To hopefully provide you with a tool for Labor related
research questions;

▶ What are these slides about? A very simple introduction to LLMs +
the way to use transformers (GPT architecture) to predict next job.
Athey et al. (2024) use old GPTs but similar structure of modern (but no
thinking mechanism);

▶ What are these slides NOT about? The very formal mathematical
structure of transformers (just intro).

2/ 102

LLM in Economics

Ludwig, Mullainathan, Rambachan (2025) (LMR) distinguish 2
types of econometrically justified tasks of LLMs in Economics:

Prediction tasks: valid under one no “leakage” condition between
the LLM’s training dataset and the researcher’s sample. No
leakage can be ensured by using open-source LLMs with
documented training data and published weights. → usually
problems are bias and representativeness (e.g. are LLM responses
representative of the population ones?)

Estimation problems + counterfactuals: more complex. If
interested next year.

3/ 102

What about today’s lecture?

Introduction to the world of LLMs with an example on Labor
Economics (Athey et al., 2024). Athey et al. (2024) uses LLMs as
a predictive task.

Claim of the paper: "by using LLMs rather than a fine-tuned
transformer architecture as in CAREER, we can obtain better
job-transition probabilities."

The first step is to understand what is a transformer and what is
an LLM...

4/ 102

LLMs in a snapshot

5/ 102

At their most basic LLMs are statistical pattern-recognition and
prediction systems

LLMs output the next likely word (“token”) in a sentence
(“sequence”).
(i) token: unit of text e.g. word, character. 1 word 0.75 token
(ii) sequence: context or section (“window”) of text e.g.

sentence, paragraph, book
(iii) Max seq. length into GPT2 is 4096 tokens; Claude 2 is 100K

tokens
The likelihood of the next word appearing is determined by the
context in which the words are seen in a larger body of text
(“corpus”) and the input to the chat (user given)

6/ 102

Learning from a large corpus (see TRAINING LLM) allows LLMs
to understand the meaning of words.

LLMs derive patterns (meaning) from extensive amounts of data
(training on vast and varied corpora).

For instance, consider the large number of sentences an LLM
might encounter that begin with the phrase “my favourite colour
is. . . ”. Given this training, an LLM can predict with a high degree
of certainty that the next word is likely to be a colour (although it
doesn’t know what “colour” means the way we do).

7/ 102

This continual exposure enables LLMs to cluster or group words
like “red, blue, green. . . ” into a collective set that represents the
abstract concept of “colour”.

However "understanding" of LLMs is fundamentally different from
human comprehension: LLMs generate statistical patterns,
grouping similar tokens based on complicated metrics that
determine similarity or dissimilarity between tokens. It’s less about
true comprehension and more about recognizing patterns and
connections from vast amounts of data.

8/ 102

TRAINING LLM

▶ LLMs are trained in an unsupervised manner (unlabeled data)
on vast quantities of open source and licensed data e.g. The
Pile (825GB, incl. web, papers, patents, books, ArXiv, Stack
Exchange, maths problems, computer code)

▶ Example nr. parameters of transformer: GPT3: 175B
parameters;

▶ Responses (and parameters) are refined using
question-response pairs (“InstructGPT”) from the web,
humans or bootstrapped (i.e. the LLM outputs its own pairs)
→ reinforcement learning with human feedback (RLHF) is
used to reward LLMs to give appropriate responses
(“guardrails” like privacy, human right, ethics,...)

9/ 102

Prediction
▶ Token Prediction: is influenced by the frequency the word is seen in

various contexts but there is a degree of randomness so that the word
with the highest probability isn’t always seen.

▶ For each token, the model creates a probability distribution over all
possible tokens in its vocabulary.

▶ Example: If given the prompt “The sky is . . . ”, the model might assign
probabilities like:

Token Probability
blue 60%
clear 20%

cloudy 10%
gray 5%
other 5%

Table 1: Example of (decoder) output.

▶ The next token is selected based on this distribution, which can vary
according to different sampling methods.

10/ 102

Token Selection Techniques:
▶ Temperature:

▶ Controls randomness in token selection.
▶ Lower temperature (e.g., 0.2) makes the model more deterministic,

focusing on high-probability tokens, e.g. "blue" above.
▶ Higher temperature (e.g., 1.0 or above) increases diversity by

considering lower-probability tokens.
▶ Greedy Sampling:

▶ Always selects the token with the highest probability.
▶ Leads to predictable but potentially repetitive text.

▶ Top-k Sampling:
▶ Limits token selection to the top k tokens with the highest

probabilities.
▶ Adds diversity by excluding low-probability tokens while

retaining the most likely options.

11/ 102

LLMs Critques

LMR show some downsides of LLMs when adopted in Economics
(versions until 2024): 1) An LLM trained on “A is B” will not
know “B is A.”; 2) Minor changes in math: LLM solves (9/5)x+32
but cannot solve (7/5)x+31; 3) LLMs struggle on “counterfactual”
versions of tasks ...

12/ 102

A more formal explanation of
LLMs (more useful for the

paper)

13/ 102

Transformers

14/ 102

Transformers
Transformers are architectures that significantly improved the
performance of natural language tasks compared to earlier models
like Recurrent Neural Networks (RNNs). Its key advantage lies in
its ability to understand the relevance and context of all words in a
sentence, not just neighboring words.

A complete transformers architecture (we consider this) is divided
into:
▶ Encoder: Self-Attention + FFN
▶ Decoder: Masked self-attention + Self Attention + FFN +

Softmax → otuput are probabilities as in Tab.1
Notable exceptions:
▶ BERT: Encoder only: not goo for new text generation, but

goo for classification;
▶ (Old) GPTs: Decoder only but used as input some

pre-trained embeddings, which are generated by an encoder.

15/ 102

Since this is an introduction we won’t go to all single aspects but
we will focus on the main components common in encoders and
decoders: Self-Attention and Feed Forward Neural Net (FFN).

Time allowing I will briefly give an intuition of the roles of
Encoders and decoders along the way.

16/ 102

The macro-structure of Encoders and Decoders
Transformers

1) Attention Layer: −→

▶ (Pre-step) Input preparation:
Tokenization + Embedding

▶ Context learning: self-attention
▶ Meaning: Positional-encoding
▶ Final output: a huge elaborated

vector

2) Feed Forward Neural
Net. (FFN):

▶ Refinement of
transformer(s) result

▶ Normalization into
probabilities

▶ Final output: Complex
vector (encoder) or
probabilities of different
words that could follow
the input token
(decoder).

17/ 102

Attention Layer (starred)

18/ 102

Tokenization: transforming raw data into something the model
can understand. E.g.: (“The cat sat on the mat”):
▶ By word: [The, cat, sat, on, the, mat]
▶ By subword: often the same here, but splits prefixes/suffixes

when needed
▶ By character: [T, h, e, ␣, c, a, t, . . .]

Step 2. Embedding:

Embed : x ∈ Rn → y ∈ Rm

▶ x: input token (e.g. "cat") y: corresponding numerical
vector

▶ n: input dimension m: embedding dimension
Result after Step 2: cat → [0.25, 0.78, 0.45, . . .]: language model
is represented as a point in a multi-dimensional space.

19/ 102

Self-Attention (is all you need...)

Self-attention helps the model determine which words (or tokens)
in a sentence are most relevant to each other when generating
responses.
▶ When we read, we look back at earlier words to keep the

context straight.
▶ In “The cat chased the mouse because it was hungry,” it

refers to the cat—we figure that out by linking words.
▶ Self-attention lets a model do the same: it looks at all the

words at once and gives more weight to the ones most
relevant to each word.

▶ Result: the model keeps track of who/what refers to what
and which words matter most for meaning.

20/ 102

What is Attention concretely? A score attached to every token ad constructed
as follows:

▶ Input: Convert each token to an embedding vector (e.g., “The cat
chased the mouse” → vectors).

↓
▶ Q/K/V: For each token, form Query (Q) (repres. of word we are

focusing on), Key (K) (repres. of all other words), Value (V)
(information we want to keep from each word) vectors. These are
used for comparing each word to every other word in sentence.

↓
▶ Attention Scores: Relevance of token i to others = dot products of its

Q with all K’s. Idea: measure of how relevant each word is to the query
word;

↓
▶ Softmax: Convert scores into a probability distribution (weights sum to

1). Why? So that model can focus more on the most relevant words

20/ 102

What is Attention concretely? A score attached to every token ad constructed
as follows:

▶ Input: Convert each token to an embedding vector (e.g., “The cat
chased the mouse” → vectors).

↓

▶ Q/K/V: For each token, form Query (Q) (repres. of word we are
focusing on), Key (K) (repres. of all other words), Value (V)
(information we want to keep from each word) vectors. These are
used for comparing each word to every other word in sentence.

↓
▶ Attention Scores: Relevance of token i to others = dot products of its

Q with all K’s. Idea: measure of how relevant each word is to the query
word;

↓
▶ Softmax: Convert scores into a probability distribution (weights sum to

1). Why? So that model can focus more on the most relevant words

20/ 102

What is Attention concretely? A score attached to every token ad constructed
as follows:

▶ Input: Convert each token to an embedding vector (e.g., “The cat
chased the mouse” → vectors).

↓
▶ Q/K/V: For each token, form Query (Q) (repres. of word we are

focusing on), Key (K) (repres. of all other words), Value (V)
(information we want to keep from each word) vectors. These are
used for comparing each word to every other word in sentence.

↓

▶ Attention Scores: Relevance of token i to others = dot products of its
Q with all K’s. Idea: measure of how relevant each word is to the query
word;

↓
▶ Softmax: Convert scores into a probability distribution (weights sum to

1). Why? So that model can focus more on the most relevant words

20/ 102

What is Attention concretely? A score attached to every token ad constructed
as follows:

▶ Input: Convert each token to an embedding vector (e.g., “The cat
chased the mouse” → vectors).

↓
▶ Q/K/V: For each token, form Query (Q) (repres. of word we are

focusing on), Key (K) (repres. of all other words), Value (V)
(information we want to keep from each word) vectors. These are
used for comparing each word to every other word in sentence.

↓
▶ Attention Scores: Relevance of token i to others = dot products of its

Q with all K’s. Idea: measure of how relevant each word is to the query
word;

↓

▶ Softmax: Convert scores into a probability distribution (weights sum to
1). Why? So that model can focus more on the most relevant words

20/ 102

What is Attention concretely? A score attached to every token ad constructed
as follows:

▶ Input: Convert each token to an embedding vector (e.g., “The cat
chased the mouse” → vectors).

↓
▶ Q/K/V: For each token, form Query (Q) (repres. of word we are

focusing on), Key (K) (repres. of all other words), Value (V)
(information we want to keep from each word) vectors. These are
used for comparing each word to every other word in sentence.

↓
▶ Attention Scores: Relevance of token i to others = dot products of its

Q with all K’s. Idea: measure of how relevant each word is to the query
word;

↓
▶ Softmax: Convert scores into a probability distribution (weights sum to

1). Why? So that model can focus more on the most relevant words

21/ 102

↓
▶ Weighted sum:Each word’s value V is multiplied by its attention score,

and the results are summed to create a new representation of the word.
↓

Steps 1-5 can be summarized in a formula:

Attention(Q, K, V) = softmax
(

QK⊤
√

dk

)
V

where
▶ Q: queries, K: keys, V : values
▶ dk: key dimension (for scaling)

Notice: Self-attention is linear in V : with Q, K fixed: linear, the attention
weights A = softmax(·) the map AV is linear.
Example: Representation for "it" in "[“The”, “cat”, “chased”, “the”, “mouse”,
“because”, “it”, “was”, “hungry”]": (i). Calculate Attention Scores via
formula: The model computes how well the query “it” relates to each of the
keys (K) from the other words; (ii) The word “cat” would likely receive a
higher score than “mouse” because “it” refers back to “cat.” (iii) The resulting
representation for "it" would be a weighted sum of the value embeddings,
emphasizing the context provided by the word “cat.”

22/ 102

For picky ones...
Say our sentence is "a b c D";

▶ Turn those words into tokens (each token is a 3-dimensional vector):
a =
[

a1 a2 a3
]

, b =
[

b1 b2 b3
]

, c =
[

c1 c2 c3
]

, D =
[

D1 D2 D3
]

.

▶ Stack the 4 tokens into a matrix X (shape 4 × 3):

X =

[
a1 a2 a3
b1 b2 b3
c1 c2 c3
D1 D2 D3

]
∈ R4×3

.

▶ How are we sure that Attention divides tokens into Q,K,V s.t. we can learn context? Key: learned
weights. To prepare for attention, we must first generate the K, Q, and V using LEARNED weighted
matrices. For this sentence, we want to transform it into a 4 × 2 matrix. So, each of the weight matrices
will be of shape 3 × 2. For example, below is the weight matrix for Q named W :

W =

[
Q11 Q12
Q21 Q22
Q31 Q32

]
∈ R3×2

.

Using W , obtain the query matrix:

Q = X W ∈ R4×2 =

 a1Q11 + a2Q21 + a3Q31 a1Q12 + a2Q22 + a3Q32
b1Q11 + b2Q21 + b3Q31 b1Q12 + b2Q22 + b3Q32
c1Q11 + c2Q21 + c3Q31 c1Q12 + c2Q22 + c3Q32

D1Q11 + D2Q21 + D3Q31 D1Q12 + D2Q22 + D3Q32


=

a
Q
1 a

Q
2

b
Q
1 b

Q
2

c
Q
1 c

Q
2

D
Q
1 D

Q
2

 =

aQ

bQ

cQ

DQ

 ,

23/ 102

▶ Why 4× 2? 4× 2 is a design choice, not a mathematical necessity:
▶ 4 = sequence length. We have 4 tokens (a, b, c, D), so the

first dimension stays 4 no matter what. Attention keeps one
row per token.

▶ 2 = head dimension dk. The second dimension is chosen by
the model designer (or the model per se if using an OpenAI
architecture for instance) for the size of the query/key (and
often value) vectors. You could pick 1, 2, 3, 4, . . .—it’s a
hyperparameter.

▶ Notice how each vector in the resulting matrix Q is not a linear
combination of all other tokens! Rather, each vector is a linear
combination of itself and some weights. The first vector is just a linear
combination of "a". The second is just a linear combination of "b"...

▶ This transformation does not mess up the sequence order within the
matrix. a is still at the top of the matrix and D is still at the bottom of
the matrix.

▶ Same process for forming K and V .

24/ 102

NOTE:

Modern LLMs, use Multi-head self-attention to capture different
aspects of language.

Each head learns a different relationship, such as identifying
entities, actions, or other properties (learned in the pre-training on
the corpus: remember categories like "colour"?).

Example: "She saw the moon with a telescope": one head might
focus on the subject ("she"), another on the action ("saw"), and
another on the object ("telescope").

Objective: being faster.

25/ 102

What about Position?

Problem: Transformer architecture, treats all words
simultaneously without any sense of order. .Attention does not say
anything about the word ordering in a sentence! Ordering is crucial
for the meaning of the sentence, e.g. "The cat chased the mouse"
and "The mouse chased the cat" have completely different
meanings despite using the same words.

Solution: Step 3. Positional Encoding. Give the model
information about the position of each token in a sequence. How?
Adds specific numerical values to the token embeddings based on
their position in the sentence.

26/ 102

Why not just a single number in embedding indexing
position? After all, we could think of simply adding a further
dimension and put a number indexing the position of the token in
the sequence!

The latter is a bad idea for several reasons. The more intuitive is
that for long sequences, the indices can grow large in magnitude. If
you normalize the index value to lie between 0 and 1, it can create
problems for variable length sequences as they would be normalized
differently!

So what should we do? Intuitively, transformers use a smart
positional encoding scheme, where each position/index is mapped
to a unique vector. Hence, the output of the positional encoding
layer is a matrix, where each row of the matrix represents an
encoded object of the sequence summed with its positional
information. (see next slide)

27/ 102

28/ 102

Sentence of length L and require position of kth element:

PE(k, 2i) = sin
(

k

10000
2i

dmodel

)
, PE(k, 2i + 1) = cos

(
k

10000
2i

dmodel

)
▶ P E(k, j) Position function for mapping a position k in the input

sequence to index ((k, j)) of the positional matrix
▶ i: Used for mapping to column indices 0 ≤ i < dmodel/2, with a single

value of i maps to both sine and cosine functions
▶ k: Position of an object in the input sequence, 0 ≤ k < L/2 (e.g.

0, 1, 2, · · ·)
▶ dmodel: total embedding dimensionality.
▶ Why sine & cosine? They create smooth, repeating waves at multiple

frequencies, so nearby positions have similar codes and the model can
sense both short- and long-range distances: sin for even and cos for odd
positions in matrix.

29/ 102

▶ 10000 is a user chosen number
▶ Relative distance emerges: Phase shifts of sin/cos make

offsets (“how far apart”) easy to learn via dot products in
attention (e.g. cosine-similarity idea applied to attention).

▶ Same size as Step 2. embeddings: PE(k) ∈ Rdmodel so we
can add it elementwise to the token embedding—no shape
changes—and every feature channel carries position info.

▶ Effect: positional encoding is added to its corresponding
embedding vector. This combined vector allows the model to
consider both the word’s meaning and its position in the
sentence.

30/ 102

WHAT IS THE OUTPUT OF POSITIONAL ENCODING
LOOK LIKE?

31/ 102

FFN

32/ 102

How do signals move in NN?
▶ Weighted input: Each connection between neurons has a weight, which

determines the strength of the signal passing through it.
▶ Summation: A neuron receives multiple weighted inputs from other

neurons. These inputs are summed together at a summation junction. So
[W]⊗ [X] + [Bias] = [Z]

▶ Activation function: The summed signal is then passed through an
activation function to produce the neuron’s output signal. This step
introduces a non-linearity;

▶ Layered movement: This process repeats across multiple layers. The
output from a neuron in one layer becomes the input for neurons in the
next layer.

33/ 102

FFN is a series of layers (input layer + one or more hidden layers + output
layer. No inner loops.) stacked together: each layer transforms the input data
from preceeding layer into a new representation.

1. Input layer receives the output representations from the attention
mechanism;

2. Hidden Layers: each hidden layer consists of multiple neurons. Each
neuron receives input from the previous layer, applies a weight to it, adds
a bias, and then passes the result through a ReLU activation function;

3. Output Layer: produces the results (probabilities for different words).
In one line, 1-3 are:

h = ReLU
(
W2 · ReLU

Output of previous layer︷ ︸︸ ︷
(W1 · x + b1) +b2

)
.

where h is the FFN’s output; W1 and W2 are weight matrices connecting the
layers; b1 and b2 are bias vectors; and ReLU(z) = max{0, z} is the activation
that introduces nonlinearity, allowing the model to capture more complex
patterns.

34/ 102

Activation functions are important to add non-linearities in the NN: they
transform the input signal of a node into an output signal that is then passed
on to the next layer.

Without activation functions, neural networks would be restricted to modeling
only linear relationships (e.g. hk = Wk · zk−1 + b rather than
hk = g(Wk · x + b)) between inputs and outputs.

Why introducing non-linearities is important? Most real-world data is
non-linear → intuitively if we were forced to use linear relationships we would
need more layers and nodes to reconstruct potential non-linearities in data (e.g.
construct a circle using only lines requires a lot of linear equations vs
constructing it using second order equations requires only one!)

How can something this simple ReLU(z) = max{0, z} allows for a lot of
non-linearities? Imagine this as a lego problem: ReLU gives you the possibility
of combining more non-linear shapes rather than just linear one (check graph of
ReLU and imagine to add it/modify it at every layer...you pretty much can
reconstruct every function as a sum of ReLUs)...

35/ 102

Example

▶ "cat" = [0.23,0.14,0.11,0.46]
▶ Normalization step to avoid gradient vanishing in layers (see pag. 39):

x = cat−µ
σ

▶ First Layer: z1 = W1 · x + b1

▶ Activation: h1 = ReLU(z1)
▶ Output: Probabilities of different words that could follow the input token

"cat".
How do we understand if the output probabilities are correct? LLMs learn in
the training phase by adjusting their internal parameters during training.

But how do they know whether they’re doing well or need improvement? This
is where the loss function (typically cross-entropy) comes in. The loss function
measures how far off the model’s predictions are from the actual correct
answers, helping it to “learn” and improve over time.

Once these parameters are learned (loss almost 0) the model is trained and can
learn on new sequences (which is what we do when PROMPTING an LLM!).

36/ 102

So, in the training phase the model has learned some
loss-minimizing parameters...but how to ensure outer-validity?
(i.e. that predictions are loss minimizing also off sample)?

We need a way to improve the model’s performance. This is done
through a process called backpropagation combined with
optimization. These methods adjust the model’s internal
parameters so that it makes better predictions in the future.

37/ 102

Backpropagation

▶ Forward Pass: The model makes a prediction by passing the input data
through all the layers of the network.

▶ Calculate Loss: The loss function calculates how far off the model’s
prediction was from the correct answer.

▶ Backpropagation: The model calculates the gradient of the loss
function wrt each weight. This tells us how much a small change in
each weight will affect the loss (i.e. how much the model is robust
to out-of-sample prompts) → if a slight change in W completely messes
the output, the model is unreliable!

▶ Update Weights: Using these gradients, the model updates its weights to
reduce the error, a process called optimization.

38/ 102

Example:
▶ Forward: Suppose the model predicts the next word in a sentence and

makes a mistake. The true word is “mat”, but the model predicts “chair”
with the highest probability..

▶ Loss: The cross-entropy loss is calculated, and it turns out to be
relatively high because the model predicted the wrong word.

▶ Backward: The model calculates the gradient of the loss function with
respect to each weight. It identifies that some weights contributed more
to the error than others.

▶ Update: Using the gradients, the model adjusts its weights. For example,
the weight responsible for predicting “chair” might be decreased, while
the weight for “mat” is increased. How? SGD/Adam step
θ ← θ − η∇θL. E.g., if θ0 = 0.5, ∂L

∂θ
= −0.1, η = 0.05, then

θ1 = 0.5− 0.05(−0.1) = 0.505 (increasing the weight helps raise
pθ(“mat” | x)).

▶ Repeat: iterate over many examples to improve predictions.

39/ 102

The gradient descend problem (intuition)
Denote hidden states h1, h2, . . ., inputs u1, u2, . . ., and outputs x1, x2, Let
it be parameterized by θ, so that the system evolves as

(ht, xt) = F (ht−1, ut, θ).

Simplify to the case where xt = ht (e.g. one layer) since the problem already
presents here:

xt = F (xt−1, ut, θ).
Now, take the differential (over all dimensions):

dxt = ∇θF (xt−1, ut, θ) dθ +∇xF (xt−1, ut, θ) dxt−1

= ∇θF (xt−1, ut, θ) dθ +∇xF (xt−1, ut, θ)[∇θF (xt−2, ut−1, θ) dθ+
+∇xF (xt−2, ut−1, θ) dxt−2

...

=
[
∇θF (xt−1, ut, θ) +∇xF (xt−1, ut, θ)∇θF (xt−2, ut−1, θ) + · · ·

]
dθ.

where each substitution is by recursion (e.g. substitute dxt−x using the
expression of dxt above but in t− 1...)

40/ 102

Training requires a loss function to minimize; let loss be
L = L(xT , u1, . . . , uT). Then gradient descent gives

dL = ∇xL(xT , u1, . . . , uT) dxt =

= ∇xL(xT , u1, . . . , uT)
[
∇θF (xt−1, ut, θ) +∇xF (xt−1, ut, θ)∇θF (xt−2, ut−1, θ)

+ · · ·
]

dθ,

and the parameter update is

∆θ = −η
[
∇xL(xT)

(
∇θF (xt−1, ut, θ)

+∇xF (xt−1, ut, θ)∇θF (xt−2, ut−1, θ) + · · ·
)]⊤

,

where η is the learning rate.
The vanishing/exploding gradient problem appears because of repeated
Jacobian multiplications of the form

∇xF (xt−1, ut, θ)∇xF (xt−2, ut−1, θ)∇xF (xt−3, ut−2, θ) · · ·

which can shrink or blow up the gradient norm over long time horizons.

41/ 102

So why is this concretely an issue?

Example with RNN with sigmoid activation: Consider a typical recurrent
network

xt = F (xt−1, ut, θ) = Wrec σ(xt−1) + Win ut + b,

where θ = (Wrec, Win), σ is the (element wise) sigmoid, and b is a bias vector.
The Jacobian w.r.t. x at time t is

∇xF (xt−1, ut, θ) = Wrec diag
(
σ′(xt−1)

)
.

Hence a k-step Jacobian product looks like

∇xF (xt−1, ut, θ) ∇xF (xt−2, ut−1, θ) · · · ∇xF (xt−k, ut−k+1, θ)

= Wrec diag
(
σ′(xt−1)

)
Wrec diag

(
σ′(xt−2)

)
· · · Wrec diag

(
σ′(xt−k)

)
.

Since |σ′(z)| ≤ 1 for all z, the operator norm of the above product is bounded
by ∥Wrec∥k. If the spectral radius of Wrec is γ < 1, then for large k the norm is
bounded by γ k → 0. This is the prototypical vanishing-gradient phenomenon.

42/ 102

The effect on the loss gradient is seen from

∇θL = ∇xL(xT , u1, . . . , uT)
[
∇θF (xt−1, ut, θ) +∇xF (xt−1, ut, θ)

∇θF (xt−2, ut−1, θ) + · · ·
]
.

If ∥∇xF (xt−k, ut−k+1, θ)∥ ≲ γ k with γ < 1 and ∇θF is bounded by some
M > 0, then the k-step terms in ∇θL decay like M γ k. Effectively, only the
first O(γ−1) terms contribute appreciably, and very long-range effects are lost.
(If γ ≥ 1, the above bound no longer implies decay; this is related to the
exploding-gradient case.)

▶ Each time step multiplies the backpropagated signal by something whose
size is less than 1 (because sigmoid derivatives are ≤ 1 and the recurrent
weight matrix has spectral radius γ < 1).

▶ Multiplying numbers < 1 many times makes the signal shrink
exponentially.

▶ As a result, events that happened many steps in the past barely change
the loss, so the model gets almost no learning signal to adjust weights
based on long-range dependencies.

▶ Practically: the RNN forgets long-term information and mainly learns
short-term patterns; early time steps don’t get trained effectively.

43/ 102

Long story short

FFN is usually adopted after the Self-Attention mechanism(s).
Depending on whether it is in encoder or decoder, it takes as input

the "interpreted by Self-Attention" vectors and outputs
probabilities over a vocabulary.

Attention to vanishing gradient → i.e. normalize inputs of each
layer.

Why I pointed it out? Because if you build an LLM or train a
transformer it is important that you remember to normalize!

44/ 102

Go back to the Encoder-Decoder structure of
Transformers to see the role of Self-Attention an

FFN in context...

45/ 102

Encoder-Decoder Logic

How are these structures used in the Encoder-Decoder logic?

Encoder uses Self-Attention + FFN to prepare the information for
the decoder. The encoder’s output is a sequence of vectors, one
for each word in the input sentence. Each vector now encapsulates
information about the word itself, its position, and its relationships
with other words.

Decoder generates the output sequence from the processed input.
It uses similar layers to the encoder (2 x Self-Attention + FFN)
but includes mechanisms to handle the previously generated tokens
and focus on relevant input tokens.

46/ 102

FFN in Encoders
In decoder FFN just refines the output of Layers 1-2 (not special differences wrt
Encoder’s FFN). So we won’t touch the FFN apart from the question below...

Why is the FFN needed in the encoder if it just outputs the probabilities
of next word?
Encoders don’t produce next-word probabilities; they produce contextual
representations.
In this context FFN serves to further classify words an refine the attention
layer: it exploits nonlinearities to capture patterns that the linear self-attention
(linear in V , see above) did not get!

Take the sentence: “The river overflowed near the bank.” After self-attention,
the word “bank” pulls info from nearby words like “river” and “overflowed.” So
its vector now carries hints of water.
The FFN then takes that mixed vector and classifies new features: “bank =
riverside place,” “not a finance institution,” “location entity,” etc.

Because of the nonlinearity and learned weights, FFN, boosts the "river" sense
features and suppresses "finance" sense (a decision you can’t get by just
linearly mixing neighbors which is done by self-attention.)

47/ 102

Self-Attention in Decoders

48/ 102

The Decoder uses two layers of Self-Attention in a slight
different way from Encoder: Layer 1) used to decide how much
importance to give each part of the input sentence while
generating the next word in the sequence. Layer 2) Maintain
autoregressive property in prediction. Sometimes inverted.

Aim of the decoder is to generate the next token one-by-one. This
is done via Layer 1 + masked Layer 2 over the already generated
(by the encoder) ad filtered (by Layer 1) tokens.

Mask serves as anti-cheating mechanism. The mask blocks future
positions. Intuition: writing left to write: At each word, you can
reread everything you’ve written so far and decide which parts
matter most—but you can’t see the future words yet.

49/ 102

An attention mask is a binary tensor that signals which tokens should be
considered (with non-zero weights) and which should be ignored (with zero
weights). Serves to maintain autoregressive property (see following).

So
▶ WITHOUT mask, self-attention: softmax(QKT)V
▶ WITH mask, self-attention: softmax(QKT + M)V where M is the mask

matrix:

M =


aK bK cK DK

aQ 0 0 0 −∞
bQ 0 0 0 −∞
cQ 0 0 0 −∞
DQ 0 0 0 −∞


▶ The look-ahead mask is used so that the model can be trained on an

entire sequence of text at once as opposed to training the model one
word at a time (to avoid looking at future)!

▶ Masking so the model cannot look ahead at future tokens, only past
tokens!

50/ 102

How does the mask affect Attention? Example masking only "D" in " a b
c D".

Let’s adopt a (more convenient) vector notation for QKT at pag.22:

QK⊤ =

 aK bK cK DK

aQ aQaK aQbK aQcK aQDK

bQ bQaK bQbK bQcK bQDK

cQ cQaK cQbK cQcK cQDK

DQ DQaK DQbK DQcK DQDK


Adding the mask QKT we obtain:

QK
⊤ + M =

 aK bK cK DK

aQ aQaK aQbK aQcK −∞
bQ bQaK bQbK bQcK −∞
cQ cQaK cQbK cQcK −∞
DQ DQaK DQbK DQcK −∞


So applying softmax −∞ becomes 0:

softmax(QK
⊤ + M) =

 aK bK cK DK

aQ (aQaK)S (aQbK)S (aQcK)S 0
bQ (bQaK)S (bQbK)S (bQcK)S 0
cQ (cQaK)S (cQbK)S (cQcK)S 0
DQ (DQaK)S (DQbK)S (DQcK)S 0



51/ 102

So DK is all 0s now! We just learned a way to "hide the future"!

Remember indeed that the original sentence at pag.22 was "a b c
D": the DK component which we followed along the way has thus
0 effect on the Q, K, V layer. Indeed when looking at
softmax(QKT)V we see that D component is 0:

softmax(QK⊤ + M) V =
[

(aQaK)S (aQbK)S (aQcK)S 0
(bQaK)S (bQbK)S (bQcK)S 0
(cQaK)S (cQbK)S (cQcK)S 0
(DQaK)S (DQbK)S (DQcK)S 0

]
︸ ︷︷ ︸

masked, row-wise softmax

[
aV

1 aV
2

bV
1 bV

2
cV

1 cV
2

DV
1 DV

2

]
︸ ︷︷ ︸

V

=
[

(aQ aK)S aV
1 + (aQ bK)S bV

1 + (aQ cK)S cV
1 + 0 (aQ aK)S aV

2 + (aQ bK)S bV
2 + (aQ cK)S cV

2 + 0
(bQ aK)S aV

1 + (bQ bK)S bV
1 + (bQ cK)S cV

1 + 0 (bQ aK)S aV
2 + (bQ bK)S bV

2 + (bQ cK)S cV
2 + 0

(cQ aK)S aV
1 + (cQ bK)S bV

1 + (cQ cK)S cV
1 + 0 (cQ aK)S aV

2 + (cQ bK)S bV
2 + (cQ cK)S cV

2 + 0
(DQ aK)S aV

1 + (DQ bK)S bV
1 + (DQ cK)S cV

1 + 0 (DQ aK)S aV
2 + (DQ bK)S bV

2 + (DQ cK)S cV
2 + 0

]
.

52/ 102

However "future" is relative: for first word, the future are all the
next n − 1 words (e.g. "b c D" for "a b c D"), for the second the
next n − 2 and so on...

How to design a mask matrix to account for this?

M =


aK bK cK DK

aQ 0 −∞ −∞ −∞
bQ 0 0 −∞ −∞
cQ 0 0 0 −∞
DQ 0 0 0 0



53/ 102

Summary:
Future is typically masked in decoders: preserves the autoregressive
rule "predict next token from the past only." → which "past"? The
more important base on Attention → which Attention? The
Attention derived by the input (encoder given) and filtered by
Layer 1 attention of decoder (emphasize the most important parts
for the reply)

54/ 102

The end of Transformers

55/ 102

The output from the two attention layers (and FFN after) of the
decoder are logits. Logits are unnormalized, raw values generated
by the model for each possible next token before they are
converted into probabilities using Softmax.

Softmax function converts the raw output scores (logits) into a
probability distribution over the vocabulary of the LLM. Output is
like Table 1 a most likely next word (given context ad meaning of
sentences as seen in the whole transformer) is chosen.

But how can ChatGPT form sentences if it only predicts the
next word? Avalanche (or chain)mechanism! It is predicting the
next word and using the new sentence as an input for the
transformer to predict the next one and so on: e.g. initial input
sentence s → predict w1 → use s1 = s + w1 as new input to
predict w2 and form s2 = s1 + w2 → use s2 as new input to
predict w3...

56/ 102

Space for randomness
We said that the output of decoder are some logits, and, for simplicity, only
mentioned that the decision taken by the decoder at final step is stochastic.
However, this is important to answer questions like: "do we expect the same
output if we input repeatedly the same prompt?"

In principle, the decoder has a categorical distribution over tokens
p(i|context) possibly reshaped by some parameters like temperature, greedy
samp., top-k.

The decoder, when "choosing which will be the next word" then chooses one
token (by sampling or greedy argmax) and appends it.

Thus, with the same exact prompt and the same decoding settings:
▶ If "greedy" is on: we always obtain the same next word, i.e. the most

likely one
▶ If "sampling" is on repeated runs can yield different next words. As we

will see, which replies will be more likely depends on temperature T : e.g.
if T → 0 we will obtain the most likely (next) word for each sample (the
same as greedy) most of the times but not always!

57/ 102

So summarizing:
▶ The distribution p(i|context) is fully determined by the

prompt and the model;
▶ Sampling means "changing the seed" at every iteration

(keeping prompt and temperature fixed), i.e. influences the
way the decoder picks from p(i|context). Same as in data
analysis!

▶ Example: Suppose after your prompt the next-token probs are
[p("Engeneer")=0.5, p("Teacher")=0.1, p("Data
Analyst")=0.4]. Seed 123 → draws Engineer. Seed 456 →
PRNG draws Data Analyst.
The distribution (p) didn’t change; only the random pick from
p did.

Why useful to try different seeds? E.g. if there are more "very
likely" next words we need to know + robustness!

58/ 102

Focus on: Sampling

Sampling over which distribution? The Model-distribution is different from
the true (real-world) distribution over alternatives (e.g. possible jobs). The
former can be learned, the latter is unknown.
Model-distribution is a distribution over the same decoding parameters
(temperature, top-k...) where randomness derives from changing seed

What does "sampling" over the model distribution mean in this context?
It simply means to provide an identical prompt to LLM several times changing
the seed at each iteration. Notice: By def. , as soon as you change
temperature, you change the model (and so you are sampling in a different
model distribution!)

59/ 102

Take home...

An output (e.g. a job title) is a sequence of tokens. Its probability
is the product of next-token probabilities at each step (chain rule).

If you change T, you change each step’s next-token
distribution, so you sample on a different model so the
product changes.

Keep in mind: if you claim that you bootstrapped the LLM you
cannot claim it by changing temperature at each iteration!

60/ 102

Final clarifications

61/ 102

Transformers = LLMs?

We now (hopefully) have clear what is a transformer and what is
an LLM.

However their difference can be tricky to catch since transformers
are necessary and sufficient conditions for having an LLM!

More generally however, a transformer is a complex NN with
attention mechanism that can be fine-tuned and trained on every
type of data (e.g. CAREER does it on numeric variables) and
whose output is a probability distribution.

An LLM is a transformer specifically trained on language. Typically
these are trained on language and while the output is a
probabilistic distribution over words.

62/ 102

Output of a transformer: It is the output of a NN: probabilities.

Output of an LLM: Formally these are probabilities over the next
word, however these are not seen by the user → unless you have
constructed the LLM yourself, there is no easy way to see the full
probability distribution over all the vocabulary (nowadays maybe
yes) → the user can only see the next word(s)!

63/ 102

Fine tuning vs Prompting
Papers use these terms in a confusing way often when talking about LLMs.
True meaning:

▶ Fine-tuning in theory refers only to the fine-tuning of the parameters of
the transformer inside the LLM: taking a pre-trained LLM and continuing
its training on a smaller, specialized dataset to adapt its internal
parameters for a specific task or domain → Fine-Tuning changes
permanently the parameters of the pre-trained LLM specializig it;

▶ Prompting is the set of sentences that we write on the interface of a GPT
to get an answer.

Confusing usage:
▶ Some papers (above all those written when LLMs started to emerge and

we knew little about them) say that they "fine-tuned" the LLM in order
to obtain a certain result meaning that they corrected the answers of the
LLM after prompting.

▶ The practice to "teach" LLMs via prompting them documents, CVs...is in
reality know as Prompt engineering → Prompt engineering does NOT
change the parameters of the pre-tained LLM, but just refines its
answers

64/ 102

The importance of parameters

While smaller model trained on high-quality data can outperform a larger
model trained on poor data, ceteris paribus having more parameters allows to
capture more complex relationships (i.e. to get closer to human language).

Which parameters? Parameters are spread throughout the LLM: e.g.
embedding and positional weights, attention weights, all the parameters of the
FFN, Top-p (number of tokens considered possible new predicted words),...

Why ceteris paribus, more parameters is better?

Think about the benefits of parameters: e.g. more FFN parameters means
more refinement and more possibilities to explore non-linear relationships in
input data and in output; more attention weights means a better understanding
of the relationships of the words one to the other,...

Of course more parameters come with a cost: more computational power
needed!

65/ 102

Temperature

Temperature control randomness in token selection: the higher the temperature
the more diverse (also low-likely) outcomes are considered. Formally,
temperature rescales logits before softmax:

pT (i) = exp(zi/T)∑
j

exp(zj/T)

where zi and zj are logits (outputs of decoder).
T=1 gives the model’s own next-token distribution; T<1: high-logit options
get more mass; T>1: flatter mass spreads to lower-logit options.

Why? Intuition in next slide...

66/ 102

Premise: Logits are the raw, unnormalized output scores
generated by a model before they are converted into probabilities.

They represent the model’s confidence in each possible
output token or class. Higher logit values indicate higher
confidence.

Look at the odds ratio between two tokens i and j:

pT (i)
pT (j) = exp

(
zi − zj

T

)
.

If zi > zj (token i has a higher logit), then (zi − zj)/T gets larger
when T < 1. Hence the ratio pT (i)

pT (j) increases, so the higher-logit
token grabs more probability mass relative to the lower-logit one.
Conversely, T > 1 shrinks that ratio (flatter distribution).

67/ 102

Labor-LLM (the paper)

68/ 102

Motivation

▶ Why interesting for Labor economists? Provide reliable predictions of
the conditional probability of transitions in labor market;

▶ Tons of "traditional models" failed. Why? Tons of career paths for a
person, but few data points of people that effectively undertook them! →
need to predict the 0s somehow! traditional models make too restrictive
assumptions (e.g. next occupation of a worker depends only on his/her
last occupation) → inadequate for predictions

▶ Solution? foundation models. Models that are able to encode
(transform in a low dimensional vector) the entire career history of a
worker. Foundation models are basically the resulting models after
pre-training (e.g. LLMs after pre-training on corpus).

▶ Idea: Predicting next job is similar to predicting next word which can be
done via LLM!

▶ The power of foundation models lies on the fact that they are pre-trained
using large-scale datasets (e.g. the internet) and lately fine-tuned using
specialized surveys. Examples are transformers (and LLMs).

69/ 102

Challenges
Challenges with General (no FT) LLMs

▶ General-purpose LLMs (i.e. not fine-tuned) may not accurately
represent real-world job transition probabilities (usually not trained on
representative-data: no guarantee that the transition specified by LLM
reflects the true one);

▶ Without fine-tuning, LLMs might not reflect true transition patterns for
diverse demographics (e.g., underrepresented groups).

Challenges with FT-LLMs
FT.1 Even fine-tuned LLM present a challenge (res. question basically): can

FT-LLMs make predictions about job transitions that are representative
of real-world transitions, conditional on history?

FT.2 Why challenging? Because the true population transition probabilities
are unknown due to the high dimensional space of potential histories!

FT.3 The idea is that –since I could have done tons of other jobs, and hence
condition on tons of possible histories – the true (conditional) transition
probabilities from my actual job to any possible other jobs are unknown!

70/ 102

FT.4 How to evaluate performances then since we don’t know the true
conditional probabilities of next occupations for every possible history
(the “ground-truth transition law”)? We don’t need the true probabilities
to score predictions. We only need the actual realized next job for each
observed history!

Intuition: We want to make prediction and understand how good the
model is in predicting next job! So as long as the model predicts
accurately the actual job (next job for the fine-tuned model in the training
set) and has outer-validity, who cares about having all possible histories!

FT.5 So we cannot report “true transition probabilities” for each complex
history (a representativeness problem), but we can evaluate predictions on
observed outcomes.

FT.6 Disclaimer: This assesses predictive accuracy, not the full, unknown
data-generating law (e.g. I cannot say with certainty what would have
been your next job would the history be different or in general the
prob. over other possible next job given all possible histories).

FT.7 So... good for prediction not for counterfactuals.

71/ 102

Prompting or Fine-tuning?

In this paper they fine-tuned the model adapting pre-trained models to a
specific domain: Labor.

So they properly fine-tuned the transformer updating the weights of a
pre-trained (remember the pre-training on the corpus? They do not do it but
take a pre-trained model for computational reasons) LLM using labor data
(CV...) → as if we take someone who knows the general rules of the world and
specialize her. Called FT-LABOR-LLM.

Embedding Extraction + Classifiers: Use LLM-generated embeddings with
separate classifiers to refine predictions.

Robustness checks with prompt eng. and in context-learning made but lower
performance. Remember? these do not require fine-tuning: you can also do it
directly in chatgpt interface by making it more an more specific questions...

72/ 102

Objective

The paper claims that, by using fine-tuned LLMs (Llama-2) rather than a
fine-tuned transformer architecture as in CAREER, there are major advantages.

Why?

The key differences are the following: (i) the transformer that forms CAREER
has fewer parameters (a major disadvantage for a transformer as seen) (ii)
CAREER is pre-trained on a much smaller corpus than Llama-2 (iii) CAREER
does not use textual descriptions of job-titles → important to do so because we
can then represent full career histories in lower dimensional embeddings...

73/ 102

LLM Notation

Notational conventions in LLM: The setup defines a word set W, a token
vocabulary (set of all possible tokens) VLLM (e.g., size 32,000), and a
tokenization map TOK :

⋃∞
j=1W

j →
⋃∞

j=1 V
j

LLM that converts any (
⋃∞

j=1)
word sequence into a token sequence. Given a context limit CLLM, the LLM
estimates next-token probabilities P̂LLM(vk+1 | v1:k) ∈ [0, 1] for contexts
v1:k ∈ V k

LLM with 0 ≤ k ≤ CLLM.

Notice: the "avalanche (chain) rule" mentioned at pag.55, can be translated in
the current notation by saying that the sequence
P̂LLM(vk+1, vk+2 . . . vk+k′ | v1:k) can be derived from individual next token
predictions.

Classical objective (see above): estimate the probability that the next token
is vk+1, conditional on a sequence of k tokens (i.e. the prompt) using the
FT-LLM.

74/ 102

Additional functions are as follows:
▶ TITLE : Y −→

⋃∞
j=1W

j maps an occupation to its English-language
title. For example, the occupation with occ1990dd code 95 is mapped to
“nurse practitioners.”

▶ TMPL
(
xi,≤t, yi,≤Ti

)
transforms the person’s full resume into text all

covariates up to time t and every observed occupation from the start
through the last observed transition Ti. Used for fine-tuning.

▶ TMPL
(
xi,≤t, yi,<t

)
The truncated resume up to (but not including)

transition t contains covariates up to t and only past occupations
1, . . . , t− 1. This is the prompt used at prediction time for transition
t ≤ Ti; the occupation at t is intentionally omitted so the model can
predict it.

75/ 102

Labor Notation
1 Difference between t = 1, 2, . . . Ti = sequence number of observation

events (transitions) for person i and yeari,t representing calendar year at
transition t.

2 Transitions ̸= change jobs! They are just checkpoints were they record
the occupation of i: sometimes it changed sometimes it did not.

3 Why not calling t the time? Because the checkpoints are unevenly spaced
in calendar years (i.e. t + 1 for i can be 3 years after). The model
predicts what happens from this checkpoint to the next one, regardless of
whether that’s 1 year or 3 years apart. Summary example:

event (t) calendar year (yeari,t) occupation (yi,t)

1 2010 Sales
2 2012 Sales
3 2015 Tech

Here, t advances 1→ 2→ 3 as observations occur, while years jump
2010→ 2012→ 2015. The model predicts the state at t + 1 given the
history through t, regardless of how many calendar years pass between t
and t + 1.

76/ 102

3 yi,t occupation of i in transition index t;
yi,<t = (yi,1, yi,2, . . . yi,t−1) occupations of i prior to t with
yi,1 = ∅ (i.e. unemployed in t = 0);

4 xi,≤t are the time varying (support Xvar) and time invariant
(support Xinv) characteristics of i before and including t.

5 Probability that worker’s next job is yi,t conditional on i′s
prior career history yi,<t and (prior) covariates:

P (yi,t | yi,<t, xi,≤t)

77/ 102

As already mentioned, they cannot know the DGP, say
P ∗(yi,t+1|full history up to t) ∀ histories. However the can evaluate the
performance of the model on observed next jobs yi,t.

How so? Via perplexity: lower perplexity, more accurate performance. For an
occupation model P̂ (yi,t|xi, xi,≤t, yi,<t) (estimated probability via LLM that
the LLM assigns to occupation y in t)

P P L = exp

(
− 1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

log P (yi,t | xi, xi,≤t, yi,<t)

)
Logic of perplexity: exponential of the average negative log-likelihood (aka
cross-entropy);
If P P L = |Y|, the model behaves as if at each step it was choosing among |Y|
equiprobable occupations (tiny link with discrete choice models).
If PPL = 1, the model is (essentially) perfectly confident and correct every
time.

Aim is o minimize PPL!

78/ 102

How much would perplexity be if the model is uninformative (i.e. each
next job equally likely?)

|Y|, i.e. nr. of jobs considered.
Logic: fix a guy, i, Ti = 5 and nr. of jobs is |Y|. The uninformative model will
predict all next jobs as equally likely with prob.: 1

|Y| . The uninformative model
assigns prob. 1

|Y| to each next job. So we have
P P L = exp(− 1

5 ∗ 5 ∗ (log(1/|Y|))) = |Y|.

Where randomness can arise? 1) Which training people you happened to use
(training-sample luck). 2) Randomness inside fine-tuning itself (e.g., the
shuffled order of examples used by stochastic gradient descent). 3)Which test
people you happened to evaluate on (test-sample luck).
What is point 2)? In fine-tuning, the model sees the training cases many
times (epochs). Before each epoch, we shuffle the order of training examples
(or mini-batches). SGD updates weights after each example/mini-batch using
its gradient. So randomness comes from shuffling in fie-tuning...
Why shuffling at all? (i) Shuffling breaks harmful patterns (e.g., all nurses
then all programmers) and (ii) makes gradient noise more “i.i.d.

Possible Solution: BOOTSTRAP

78/ 102

How much would perplexity be if the model is uninformative (i.e. each
next job equally likely?) |Y|, i.e. nr. of jobs considered.
Logic: fix a guy, i, Ti = 5 and nr. of jobs is |Y|. The uninformative model will
predict all next jobs as equally likely with prob.: 1

|Y| . The uninformative model
assigns prob. 1

|Y| to each next job. So we have
P P L = exp(− 1

5 ∗ 5 ∗ (log(1/|Y|))) = |Y|.

Where randomness can arise? 1) Which training people you happened to use
(training-sample luck). 2) Randomness inside fine-tuning itself (e.g., the
shuffled order of examples used by stochastic gradient descent). 3)Which test
people you happened to evaluate on (test-sample luck).
What is point 2)? In fine-tuning, the model sees the training cases many
times (epochs). Before each epoch, we shuffle the order of training examples
(or mini-batches). SGD updates weights after each example/mini-batch using
its gradient. So randomness comes from shuffling in fie-tuning...
Why shuffling at all? (i) Shuffling breaks harmful patterns (e.g., all nurses
then all programmers) and (ii) makes gradient noise more “i.i.d.

Possible Solution: BOOTSTRAP

79/ 102

What we have until now?

▶ LLM Notation: Functions that transform numerical variables
into texts and collection of variables (e.g. yi,≤t, xi,≤t) into
text:
▶ TITLE→ job codes into plain english;
▶ TMPL

(
xi,≤t, yi,≤Ti

)
→ FULL resume into text;

▶ TMPL
(
xi,≤t, yi,≤t

)
→ TRUNCATED resume (up to t) into

text;
useful for prompting and fine-tuning;

▶ Labor Notation: Definitions of career history, transition
probabilities and the way to express covariates up to a certain
point. → useful for math clarity.

▶ A way to measure the qualitiy of predictions in LLMs
(perplexity);

80/ 102

With these tools we can distinguish the 3 uses of LLMs in the paper better:
1) Model used only as generative (no output probabilities): Give LLM

the truncated résumé prompt. The model writes a job title as plain text,
e.g. it outputs: “Software Engineer.” That’s just a guess produced by its
decoder. Does not tell how likely other jobs were!.

81/ 102

2) Model outputs probabilities (for a given model distribution, i.e. prompt,
temperature...):

▶ Provide the truncated résumé as the prompt history (context).
▶ For a candidate job title y with tokenization (t1, . . . , tn), query the

LLM for next-token probabilities (provided by model this time) at
each step.

▶ Score y via the chain rule:

P̂LLM(y | history) =
n∏

j=1

P̂ V
LLM
(
tj

∣∣ history, t<j

)
.

Example follows in next slide
▶ (Optional, only if a full distribution over a finite candidate set Y is

desired.) Evaluate the product above for all y ∈ Y and normalize:
▶ Note: These are the model’s own probabilities for the given prompt

and settings.

82/ 102

▶ Tokens for y1 = “Software Engineer”: t1 = Software, t2 = Engineer, then
end-of-title ⟨EOT⟩.

▶ Tokens for y2 = “Nurse”: t1 = Nurse, then ⟨EOT⟩.
Model stepwise probabilities (given the history).

P (Software | history) = 0.50,

P (Engineer | history, Software) = 0.60,

P (⟨EOT⟩ | history, Software Engineer) = 0.80;

P (Nurse | history) = 0.40,

P (⟨EOT⟩ | history, Nurse) = 0.90.

Chain-rule scores (model probabilities for full titles).

P̂LLM
(
“Software Engineer” | history

)
= 0.50× 0.60× 0.80 = 0.24.

P̂LLM
(
“Nurse” | history

)
= 0.40× 0.90 = 0.36.

So we have a probability for each job title.

83/ 102

3) Use Embeddings directly: Some LLMs expose a lower-dimensional
embedding function that maps any token sequence to a real vector (e.g.
for Llama-2-7B LLM is dLLM = 4096). Formally the embedding function
(transforms tokens in vectors of dim. 4096) is

ELLM :
⋃

j≤CLLM

V j
LLM −→ RdLLM ,

Given a word string s, tokenization TOK(s) produces a sequence
(v1, . . . , vk) ∈ V k

LLM, and the composite map ELLM ◦ TOK returns its
embedding:

e(s) = ELLM
(
TOK(s)

)
∈ RdLLM .

Mock example. Let s1 = “Past jobs: cashier → barista” and s2 = “Past
jobs: teller → barista”. Compute

e1 = ELLM
(
TOK(s1)

)
, e2 = ELLM

(
TOK(s2)

)
∈ R4096.

A common use is similarity via cosine: cos(e1, e2) = e⊤
1 e2

∥e1∥ ∥e2∥ ∈ [−1, 1],
which measures how close the two histories are in the LLM’s
representation space.

Most commonly they are used in tandem with MNL as covariates (zi,t

in later slides).

84/ 102

Step 1) vs Step 2) vs Step 3).
▶ LLM as text generator only. In Step 1 they DECIDE to use LLM as

generative model: no probabilities/logprobs are read (so no chain rule can
be applied). Could we recover probs? One could in principle make
sampling (see pag. 57) on the (model) distribution with temperature T̂ ?
Yes but is (a) costly + (b) rare-event issue! (c) useless for robustness:
same functionality as normal LLM so why not using it directly?...

▶ (a): To obtain low-variance: Many samples per temperature +
Many temperatures;

▶ (b): Pick the same sequence of tokens exactly at every sample
is difficult! Hence variance is hard to measure. Words are sequence
of tokens! Stupid example: “Software Engineer” is several tokens.
Its probability is the product of stepwise next-token probabilities.
Products get small fast → the exact string is often a rare event over
multiple sample (e.g. sometimes it can be "Software analyst");

▶ Step 2 (logprobs): LLM provides logprobs and apply the chain-rule
scoring of any candidate job.

▶ Step 3 (embeddings): treat the LLM as a feature extractor → map any
text (e.g., résumé history or a job title) to a fixed-length vector →
compare vectors (or use NN/MNL for predictions)

85/ 102

Benchmark models
The model with which results for CAREER and LABOR-LLM are confronted
with benchmark models.

First bench. comes from economic theory and is NOT an occupational model:
Multilogit (MNL)!

Idea: we have a choice problem among Y occupations. For person i at time t,
build a feature vector zi,t = g(xi,≤t, yi,<t) (history → covariates).
NOTICE: zi,t can be hand-crafted indicators (pure benchmark) or LLM
embeddings of the career history (see Step-3) (LLM complement)

Each alternative y ∈ Y has a parameter vector βy. The latent utility is

Ui,t(y) = z⊤
i,tβy + εi,t(y),

with εi,t(y) i.i.d. Gumbel.
This yields the softmax choice probabilities

P̂MNL(yi,t = y | xi,≤t, yi,<t) =
exp
(
z⊤

i,tβy

)∑
y′∈Y exp

(
z⊤

i,tβy′
) .

Parameters {βy}y∈Y are estimated by (regularized) maximum likelihood.

86/ 102

Second benchmark model is the empirical model.
Is a model that does not use any covariates or other information beyond the
immediately preceding occupation to make predictions:

P̂Empirical(yi,t |xi,≤t, yi,<t) = #(train){ yi,t−1→yi,t }+ 1
#(train){ yi,t−1 }+ 1

.

→ #(train){ yi,t−1 }+ 1: number of times occupation y appears in the training
data in t− 1;
→ #(train){ yi,t−1→yi,t }: number of times the transition from occupation
yi,t−1 to yi,t appears in the training data;
→ "+1" added for avoid dividing by 0.

87/ 102

CAREER
Big picture: CAREER adopts MNL with feature vectors zi,t learned via
Transformer to predict the next occupation in two stages: (1) will the person
stay or switch? (2) if switch, to which occupation.

Pre-requisites CAREER learns an embedding function ECAREER that maps
history and covariates to a fixed-length vector;
The output at time t is written

h
(L)
i,t

(
xi,≤t, yi,<t

)
∈ RdCAREER ,

the final-layer L representation summarizing the person up to t.

The first embedding layer combines the latest job and covariates:
h

(1)
i,t ≡ eoccupation(yi,t−1) + estatic(xi) + edynamic(xi,t) + etime(t) .

Each e(·) is a learned embedding; later layers refine this via transformer blocks
(self-attention + FFN) as follows:
Across layers ℓ = 1, . . . , L, CAREER aggregates past representations using
attention weights π

(ℓ)
i,t,t′ over previous times t′ ≤ t:

h̃
(ℓ)
i,t

= h
(ℓ)
i,t

+

t∑
t′=1

π
(ℓ)
i,t,t′ ∗ h

(ℓ)
i,t′ , h

(ℓ+1)
i,t

= FFN(ℓ)
(

h̃
(ℓ)
i,t

)
. (1)

This yields the final summary vector h
(L)
i,t .

88/ 102

Toy attention update (one worker) not in paper
%%% EXAMPLE START
At checkpoints t = 1, 2, 3 we have

h
(ℓ)
i,1 = (1, 0), h

(ℓ)
i,2 = (0, 1), h

(ℓ)
i,3 = (0.5, 0.5).

At t = 3, for instance the layer asks: "How much should I borrow from t = 1
(e.g., nursing license), from t = 2 (recent hospital role), and from t = 3
(current status) to form the best summary for making the t→ t + 1
prediction?" The learned attention weights π

(ℓ)
i,3,1, π

(ℓ)
i,3,2, answer that:

π
(ℓ)
i,3,1 = 0.2, π

(ℓ)
i,3,2 = 0.7.

The above weights are attention scores learned by gradient descent as at pag.
21 via backpropagation.

Namely, using the above notation... In layer ℓ, queries Q, keys K, and values
V are obtained via learned projections:

Qi,t = h
(ℓ)
i,t W

(ℓ)
Q , Ki,t′ = h

(ℓ)
i,t′ W

(ℓ)
K , Vi,t′ = h

(ℓ)
i,t′ W

(ℓ)
V .

Why Q,K,V functions of h
(l)
i,t?...See next slide for deepening...

89/ 102

As seen from an embedding vector (h(l)
i,t in our case) we make three

role-specific views represented by Q, K, V which are "different divisions of the
space where h

(l)
i,t lies", i.e. these views are produced by learned linear

projections so the model can discover which subspace of h is useful for
matching (Q·K) and which for content (V) via weights WQ, WK , WL.

With a causal mask (t′ ≤ t), the attention weights are computed as

π
(ℓ)
i,t,t′ = softmaxt′≤t

(
Qi,tK

⊤
i,t′

√
dk

)
,

and the context-mixed vector is

h̃
(ℓ)
i,t = h

(ℓ)
i,t +

∑
t′≤t

π
(ℓ)
i,t,t′ Vi,t′ , h

(ℓ+1)
i,t = FFN(ℓ)(h̃(ℓ)

i,t

)
.

Key point: the matrices W
(ℓ)
Q , W

(ℓ)
K , W

(ℓ)
V and the FFN parameters are the

learned quantities (via backprop from the loss) → once learned we can get the
attention weights π

(ℓ)
i,t,t′ .

Notice: when backprop. is over the whole FFN (i.e. for all layers) has optimal
weights. So we can talk about "optimal π

(ℓ)
i,t,t′ " (i.e. attention scores computed

with optimal parameters in layer ℓ) for instance.

90/ 102

Given that backprop. is over and we have optimal values for a layer ℓ...the
context-augmented vector and layer update:

h̃
(ℓ)
i,3 = h

(ℓ)
i,3 + 0.2 h

(ℓ)
i,1 + 0.7 h

(ℓ)
i,2 = (0.7, 1.2), h

(ℓ+1)
i,3 = FFN(ℓ)(h̃(ℓ)

i,3
)
.

Summary. The transformer layer forms a new summary for time t by mixing
the current representation with a weighted average of all past checkpoints
(weights π learned from data), then applies a nonlinear FFN. This lets the
model emphasize recent or historically important states before the two-stage
head predicts (i) move vs. stay and (ii) if moving, the destination.

Notice: The above example must be read as either (i) a snapshot during
training using the current parameter set at step k of optimization, or (ii) as
post-training using the fitted parameter set.
This is because we plugged in fixed numbers for the attention weights (e.g.,
0.2, 0.7) and then just compute h̃ and pass it through the trained FFN.

Why CAREER use last layer L h? Because by the time you reach layer L, the
representation at time t has already integrated the whole usable history (via
the causal self-attention mixes in all t′ ≤ t at every layer), and training has
shaped that very layer to be the thing the heads can read most easily.
%%% EXAMPLE END

91/ 102

CAREER is a 2-stage algorithm...
First Stage. How likely is a change of occupation at t+1? Logistic (sigmoid)
function of the final embedding:

P̂CAREER(movei,t = 1 |xi,≤t, yi,<t) = 1

1 + exp
(
− η⊤h

(L)
i,t (xi,≤t, yi,<t)

) .

Why this form? Choice model: switch to other job vs outside option (MNL
with outside opt.).
Second Stage. Let β ∈ RdCAREER×|Y| collect one weight vector βy per
occupation y. If move = 1 choice model between careers (MNL):

P̂CAREER(yi,t = y |xi,≤t, yi,<t, movei,t = 1) =
exp
{

β⊤
y h

(L)
i,t (xi,≤t, yi,<t)

}∑
y′ ̸=yi,t−1

exp
{

β⊤
y′ h

(L)
i,t (xi,≤t, yi,<t)

} .

If no move (MNL with y = yi,t−1),
P̂CAREER(y |xi,≤t, yi,<t, movei,t = 0) = 1{y = yi,t−1} .
Combine Stage 1 and 2:

P̂CAREER(y |xi,≤t, yi,<t) =

{
1 − P̂CAREER

(
movei,t = 1 | ·

)
, if y = yi,t−1,

P̂CAREER
(

movei,t = 1 | ·
)

P̂CAREER
(

y | ·, movei,t = 1
)

, if y ̸= yi,t−1.

92/ 102

COMPARING PERFORMANCE OF OCCUPATION
MODELS

Thus the models being compared are:
▶ P̂LLM(y | history) — end-to-end next-occupation prediction from the raw

history using a language model. Used in 3 ways (see from pag. 80):
▶ Generative only
▶ With output probabilities
▶ Embeddings directly (used with MNL for making the

prediction)
▶ P̂CAREER(y | xi,≤t, yi,<t) — two-stage MNL (stay/switch then

destination) using a transformer summary h(L) of the history.
▶ P̂MNL(yi,t = y | xi,≤t, yi,<t) — conventional MNL on hand-crafted

covariates (no learned embeddings/attention).
▶ P̂Empirical(yi,t | xi,≤t, yi,<t) — baseline choice model measuring the

probability of transitioning given as only covariate the last occupation
yi,t−1.

93/ 102

P̂MNL(yi,t = y | xi,≤t, yi,<t) vs P̂CAREER(y | xi,≤t, yi,<t)
P̂MNL(yi,t = y | xi,≤t, yi,<t) with embeddings of career history created via
LLM (i.e. zi,t is created using ELLM). Hence LLM is only used here as a
feature extractor (Step-3 of pag. 80), i.e. no passing through encoder-decoder
architecture.

VS

P̂CAREER(y | xi,≤t, yi,<t) (explained above)

Winner (performance based on perplexity): CAREER even if it relies on less
info! (does not utilize birth year information).

Any explanation? 1) P̂MNL(yi,t = y | xi,≤t, yi,<t) uses an embedding of career
history without self-attention, which instead is exploited in CAREER; 2) The
LLM provides an embedding without being fine-tuned on that task (the LLM is
only a feature extractor here): Only the MNL weights are fit! In CAREER
instead embedding is learned end-to-end for next-occupation prediction.

So why using an LLM at all for embeddings? a) LLM is highly pre-trained
on a huge corpus (knows what is an "industry", a "job" ecc...for free!) b)
Provides an embedding already knowing that it is used for some prediction

94/ 102

CAREER
vs Win Lose

LLM embeddings + MNL ✔

95/ 102

OTS P̂LLM(y | history) vs P̂CAREER(y | xi,≤t, yi,<t)
Off-the-Shelf (OTS) P̂LLM(y | history) refers to applying Step-2 of pag. 80 on
a not fine-tuned nor prompted-eng. LLM (i.e. as if you take the model of
GPT4, instead of prompts you input embeddings at the give temperature...and
take the output probabilities P̂LLM(yi,t | xi,≤t, yi,<t)

def=
P̂ V

LLM
(
Tok
(

Title(yi,t)
) ∣∣Tok

(
Tmpl(xi,≤t, yi,<t)

))
.)

VS

P̂CAREER(y | xi,≤t, yi,<t) (explained above)

Winner (performance based on perplexity): CAREER

Any explanation?
▶ Not adapted to our data: Off-the-shelf LLMs are pretrained on generic

text, not on these survey career sequences – so they miss the survey’s
priors, i.e. the descriptives that can be learned (e.g., high “stay” rate,
common/rare transitions, cohort patterns).

▶ Unknown label set: The task’s outputs are a fixed list of valid
occupations (OCC1990dd + specials). Generic LLMs spread probability
over any string, including invalid job titles, which dilutes accuracy unless
constrained or fine-tuned.

96/ 102

CAREER
vs Win Lose

LLM embeddings + MNL ✔

Off-the shelf LLM ✔

97/ 102

PE P̂LLM(y | history) vs P̂CAREER(y | xi,≤t, yi,<t)

Prompt Engineered (PE) LLMs, refer to OTS LLM improved by adding
additional information into the prompt: 1) prepend the list of all 335 job titles
(teaches the context where we are: we are looking for predictions in the space
of these 335 job titles); 2) prepend CVs from other workers: informs OTS LLM
about the structure of the data.

VS

P̂CAREER(y | xi,≤t, yi,<t) (explained above)

Winner (performance based on perplexity): CAREER

Any explanation? Reduced prompt length (in early GPTs): cannot pre-pend a
lot of info so that OTS is not that much bettered...

98/ 102

CAREER
vs Win Lose

LLM embeddings + MNL ✔

Off-the shelf LLM ✔

Improved LLM via prompt eng. ✔

99/ 102

FT P̂LLM(y | history) vs P̂CAREER(y | xi,≤t, yi,<t)

Fine-Tuned (FT) LABOR-LLM are LLMs fine tuned as explained at pages63
and 71.

Let’s go deeper...: The fine-tuning takes several steps: 1) ∀ individuals i build
text representation of their entire career (T MP L(xi≤Ti , yi,≤Ti)) 2) Fine-tune
the pre-trained LLM as follows: (i) since LLMs predict one token at a time,
instead of training them to pick a job label directly, fine-tune the LLM as a
language model on the templated career paragraphs; (ii) Once LLM knows the
structure of career summaries, it can place very high probability on the specific
tokens that spell valid job titles given the preceding context (history, year, etc.).

100/ 102

VS

P̂CAREER(y | xi,≤t, yi,<t) (explained above)

Winner (performance based on perplexity): FT LABOR-LLM

Any explanation? See pag. 72. Important: without FT, CAREER
outperforms LLM. Fine-tuning essential to remove hallucinations!
Notice that CAREER uses an already "fine-tuned" transformer so
the comparison is fair (fine-tuning slightly differs though since
CAREER accepts only numeric inputs)!

101/ 102

CAREER
vs Win Lose

LLM embeddings + MNL ✔

Off-the shelf LLM ✔

Improved LLM via prompt eng. ✔

Improved LLM via fine-tuning ✔

Table 2: Quick summary of performances (perplexity) of CAREER vs
other models (Win-Lose refers to CAREER)

Notice: Standard Errors (SE) are computed via bootstrap,
exploiting the sample variation in the training set (resample which
individuals/transitions land in the training split (bootstrap))

Federico’s concern:Notice however that, as explained at pag. 57,
another source of randomness is possible even keeping training
sample fixed! A further correction might be needed to compute SE!

102/ 102

Other checks + conclusions

This paper explores a lot of other refinements, robustness checks
(e.g. performance improvements when increasing/decreasing nr of
parameters of LLM...) and alternative sampling and bootstrap
strategies which go beyond the scope of the presentation.

The aim of the above slides was just to introduce the reader to the
usage of LLM in Economics fo predictive tasks providing Athey et
al. (2024) as an example.

I strongly recommend the interested reader to go through LMR
(2025) for a general discussion on the use of LLMs in Economics.

	

