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Abstract

International price differentiation in pharmaceuticals based on Ramsey prices has been widely discussed
in the literature while empirical studies have assessed its validity indirectly by estimating the relationship
between prices and income. The present study evaluates the Ramsey pricing of pharmaceuticals by di-
rectly analyzing whether pharmaceutical prices vary inversely with the price elasticities of demand and
derives a pricing rule in case of interdependent demand and price distortions via insurance coverage. In
this regard, it first develops a theory to analyze the Ramsey pricing of pharmaceuticals by considering im-
portant confounding factors such as insurance, income, and cross-prices. Then it identifies and estimates
the price elasticities of demand for 33 molecules in 34 countries for the period 2008-2020 by using recently
developed double/debiased machine learning methods. The results overall support the inverse elasticity
rule with nuances. Within national markets, the evidence of Ramsey pricing is moderate with strong
cross-elasticity effects. On the other hand, Ramsey prices for generics are prevalent across countries.

Keywords: Ramsey pricing; pharmaceutical industry; price elasticity; differential pricing, debiased machine
learning
JEL Codes: I10, L41, L51, L65, K21.

1 Introduction
Cross-national pricing of pharmaceuticals has long been discussed as one of the most prominent cases of
international price discrimination (Maleug and Schwartz, 1994; Danzon, 1997; Jack and Lanjouw, 2005;
Towse et al., 2015; Towse et al., 2018; Danzon, 2019). On the one hand, some authors argue that remu-
nerative drug prices are necessary because manufacturers need funding for pharmaceutical research and
development (R&D) to bring new breakthrough products to market (Danzon, 1997). Others point to equity
aspects and argue that medicines cannot be treated as normal market goods because they are essential for
public health; therefore, they should be accessible to low-income populations (Outterson, 2005). In the-
ory, differential pricing can reconcile these two objectives: higher prices in higher-income countries support
R&D activities, whereas lower prices in lower-income countries improve access to medicines (Sherer and
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Watal, 2002; Danzon, 2018)). In essence, differential pricing increases utilisation and enhances both static
efficiency and vertical equity with respect to uniform pricing. As a result, differential pricing has been a
widely accepted strategy with a long tradition in pharmaceutical markets.

Among the various theoretical approaches used to provide support for price differentiation in pharma-
ceutical markets – i.e, price discriminating monopoly, Ramsey pricing, and value-based differential pricing –
Ramsey pricing has been widely discussed in the literature, in part because of its theoretical appeal (Danzon,
2018).

Originally, Ramsey pricing was developed to solve the problem of achieving a certain level of tax revenue
with an optimal set of tax rates that maximizes social welfare (Ramsey, 1927). Ramsey’s solution was to
set prices that change inversely to the price elasticities of demand, known as the inverse elasticity rule. In
the 1970s, Ramsey theory experienced a renaissance following the influential work of Baumol and Bradford
(1970), who used the inverse elasticity rule to find an optimal set of prices for a monopoly firm to recover
joint/sunk costs that cannot be causally assigned to specific customer groups. Subsequently, Ramsey pricing
has been applied primarily to utility firms in industries where joint costs are high and marginal costs are
lower, such as telecommunications, airlines, railroads, and healthcare.

Danzon (1997) argues that pharmaceutical markets create the conditions for Ramsey pricing because
R&D sunk costs are essential to bring innovative and effective drugs to market and cannot be allocated to a
specific group of consumers or countries. This is because R&D costs are incurred before a product reaches
the market and therefore cannot be captured by marginal costs. Danzon (1997) also theoretically shows that
Ramsey pricing is welfare superior to marginal cost pricing when R&D costs are inherently high. Other
theoretical studies support the welfare superiority of Ramsey pricing over marginal cost pricing and uniform
pricing (Danzon, 1998; Danzon and Towse, 2003a; Barros and Martinez-Giralt, 2008).

Despite strong theoretical support, there is little empirical evidence for Ramsey prices in pharmaceutical
markets. The existence of Ramsey prices has so far been tested indirectly by examining the relationship
between prices and income. The basic idea is that in the presence of Ramsey prices, one should observe a
high positive correlation between pharmaceutical prices and per capita income (GDP), assuming that GDP
is a good indicator of the price elasticity of demand (Yadav, 2010a). However, empirical evidence on the
relationship between drug prices and income does not necessarily predict high positive correlations (Maskus,
2001; Sherer and Watal, 2002; Lichtenberg, 2011), while some report no correlations at all (Waning et al.,
2009b; Morel et al., 2011; Petrou and Vandoros, 2016). To the best of our knowledge, there is no study
that directly tests the validity of the inverse elasticity rule for Ramsey prices in international pharmaceutical
markets. In other words, there is a lack of empirical evidence on whether drug prices vary inversely with
the price elasticity of demand across countries. Within countries, the price elasticity of demand for pharma-
ceuticals has been estimated in a series of patient-level studies using data from natural experiments at the
individual level resulting from changes in the copayment shares of health insurance plans (Manning et al.,
1987; Goldman et al., 2004; Landsman et al., 2005; Chandra et al., 2014). Accordingly, these estimates re-
fer only to the insured population within a country, generally the USA, and none of them addresses Ramsey
pricing.

The present study aims to fill the above-mentioned theoretical and empirical gaps by assessing the valid-
ity of the inverse elasticity rule through a theoretical and empirical cross-country analysis of pharmaceutical
demand. In the theoretical part, we start from a within-country, within-molecule model with non-homothetic
preferences and uneven insurance coverage to show that income shifts do not need to move own-price elas-
ticities when drug baskets behave as near-necessities for dominant, well-insured buyers; hence, GDP per
capita is a poor proxy for elasticity, especially when coverage reshapes effective prices. Building on this, we
compare representative high-income countries (HICs) and medium and low-income countries (MLICs) to
show that the deadweight loss in total welfare is generically larger for MLICs where demand is more elastic,
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rationalizing why the inverse-elasticity rule tends to appear stronger across HICs with broader insurance
coverage and dampened price sensitivity. We then extend Ramsey–Boiteux pricing to interdependent de-
mands under insurance, obtaining a closed-form markup system in which optimal prices load on both own-
and cross-price elasticities and decompose into a Standard Ramsey Component and an Insurance-Distortion
Amplifier that scales with coverage.

We believe that these theoretical results together may explain why cross-country "prices vs. elasticities"
correlations are often weak, why monopoly distortions bite harder in poorer, more elastic environments, and
how insurance design and substitution patterns jointly determine and influence Ramsey markups together
with own and cross elasticities.

The empirical part of the study investigates the validity of the hypotheses formulated in the theoretical
part by estimating own and cross price elasticities of pharmaceuticals and tests whether the inverse elasticity
rule holds in pharmaceutical markets. In doing so, we draw on an IQVIA database of national pharmaceu-
tical markets that contains detailed information on product names and brands, launch date, quantity sold,
sales, molecules, therapeutic classes, manufacturers, and other relevant covariates. The sample consists of
34 countries, including 101 MLICs, 242 HICs 3, and 33 widely used molecules4 for the period 2008-2020.
The price elasticity of demand is estimated by using a recently developed double/debiased machine learn-
ing (DDML) method with heterogeneous treatment effects (Chernozhukov et al., 2018a; Semenova et al.,
2021). DDML combines sample splitting and Neyman orthogonality to provide an asymptotically normal
debiased estimator of treatment effect parameters in a low-dimensional and cross-sectional setting, assuming
no unobserved unit effects. Semenova et al. (2021) extend this framework by proposing an estimator that
performs better in a panel setting with a large number of heterogeneous treatment effects and with an even
larger number of potential covariates, and unobserved unit heterogeneity5. The ability to use a very large
number of covariates allows us to control for cross-price elasticity and reduces the likelihood of standard
bias from omitted variables, which has been a major drawback of traditional demand estimates. The DDML
model takes into account previous realizations of the demand system, such as price lags and sales lags, and
thus accounts for unobserved heterogeneity and serial correlation. These aspects of the demand model allow
us to better approximate the true own-price elasticities of pharmaceuticals.

The results show that all countries except the US have a negative average price elasticity, ranging from
the highest (−1.42) for Colombia to the lowest (−0.43) for China, while the molecules have a wide range of
elasticities from −2.04 (diclofenac) to −0.21 (mesalazine). To test the validity of the inverse elasticity rule
in pharmaceutical markets, we first analyze the relationship between drug prices and the price elasticities of
pharmaceutical demand. We find that country-level prices vary inversely with price elasticities in both HICs
and MLICs, indicating the existence of Ramsey prices in cross-country pharmaceutical markets. As a second
investigation of the inverse elasticity rule in pharmaceutical markets, we analyze the relationship between
GDP per capita in purchasing power parity (PPP) and the price elasticities of pharmaceutical demand. We
find evidence for the inverse relationship between price elasticities and GDP per capita in HICs and MLICs,
consistent with the Ramsey hypothesis.

The empirical analysis is repeated by using only generic products. Given that generics are no longer

1Algeria, Bulgaria, China, Colombia, Egypt, India, Romania, Russia, Serbia, Turkey
2Australia, Austria, Belgium, Canada, Croatia, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland,

Italy, Japan, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, United Kingdom, United States
3According to the World Bank’s classification of countries by income.
4Acetaminophen, acetylcysteine, acetylsalicylic acid, aciclovir, allopurinol, amlodipine, betamethasone, bisoprolol, budesonide,

carbamazepine, ciprofloxacin, clindamycin, dexamethasone, diclofenac, finasteride, fluconazole, furosemide, ibuprofen, ketocona-
zole, lactulose, levothyroxine sodium, loratadine, mesalazine, methylprednisolone, metoprolol, metronidazole, omeprazole, ranitidine,
risperidone, salbutamol, simvastatin, testosterone, valproic acid.

5See Appendix for further details
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under patent protection and can be produced at costs close to marginal costs, there are more substitutes for
generics than branded products, which might lead to higher price sensitivity. Indeed, the estimates show that
generic pharmaceuticals are highly price elastic and exhibit Ramsey principles.

The present study makes the following key empirical contributions to the literature. First, it presents
the first empirical analysis to examine Ramsey pricing in international pharmaceutical markets by directly
testing the validity of the inverse elasticity rule.6 Second, it provides the first cross-country estimates of
drug price elasticities at the molecule level. Thirdly, it enriches the theoretical understanding of Ramsey
pricing in pharmaceutical markets by showing that (i) Income may not be a good proxy for price elastic-
ity of pharmaceuticals (ii) Under Ramsey–Boiteux pricing, the share of deadweight loss in total welfare is
generically larger in MLICs than HICs, theoretically underpinning why the inverse-elasticity rule tends to
manifest stronger across HICs. (iii) We extend the Ramsey rule to settings with interdependent demands and
insurance-induced price distortions, delivering a closed-form markup system in which optimal prices de-
pend on both own- and cross-price elasticities, a standard Ramsey component, and an "insurance-distortion
amplifier" term, providing a unified theory of the prior preeminent works by Höffler (2006) and Barros and
Martinez-Giralt (2008).

The remainder of the paper is structured as follows. Section 2 gives an overview of the related literature.
Section 3 develops the theoretical model. Section 4 presents the empirical model with data source (Section
4.1), methodology (Section 4.2), and results (Section 4.3). Finally, Section 5 discusses the main findings
and concludes.

2 Literature Review
It is well known that some structural features of pharmaceutical markets violate some criteria of perfect
competition, e.g. imperfect information (Kalo et al., 2013), monopoly rents from patented innovations and
sunk costs of R&D (Danzon, 1997). Therefore, drug prices may exceed marginal costs. In this context,
international differences in drug prices have long been studied in the literature (Maleug and Schwartz, 1994;
Danzon, 1997; Jack and Lanjouw, 2005, Towse et al., 2015; Towse et al., 2018; Danzon, 2019). Researchers
have focused primarily on the welfare effects of various pricing strategies, including marginal cost pricing,
differential pricing7, as well as uniform prices. Danzon (1997) argues that marginal cost pricing in phar-
maceuticals may not be optimal because R&D is an essential part of the production process and accounts
for about 30% of total costs. Since the development of new drugs undoubtedly serves all customers around
the world, R&D costs should be considered a global joint cost (Danzon and Towse, 2003a).A crucial aspect
is that pharmaceutical R&D costs are fixed. In other words, R&D costs do not depend on the number of
countries or people that buy the drug and therefore cannot be simply allocated as a marginal cost (Danzon,
1997), so pricing at marginal cost is not the first-best pricing strategy. Based on this consideration, Danzon
(1997) suggests Ramsey pricing as the most efficient option. Given a certain profit level that covers all costs,
including R&D, Ramsey principles yield the most efficient price differentiation8 (Danzon, 1997; Danzon,
2000; Danzon and Towse, 2003a).

Ramsey pricing was introduced by mathematician Frank Plumpton Ramsey in 1927. He developed a
theory to analyze how to most efficiently collect a given level of tax revenue from different goods. Ramsey’s

6It should be noted that the methodology used also allows the direct calculation of elasticities at the drug level, as these are available
in the dataset. However, for reasons of data protection, the analysis focuses on molecules.

7Differential pricing (price discrimination, tiered pricing) means charging different prices for the same drug in different markets. It
can occur both in low-income and high-income countries and in one country between different payers (Danzon, 2018)

8The literature provides other rules for drug price differentiation, such as value-based price differentiation (Danzon, Towse, and
Mestre-Ferrandiz, 2015a) and indication-based price differentiation (Towse et al., 2018),
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theory experienced a renaissance after the seminal work of Baumol and Bradford (1970). They built on
Ramsey’s theory and applied it to a model of utility pricing that they called the second-best pricing.

The crucial idea behind Ramsey pricing is the rule of inverse elasticity, which “requires that each price be
set so that its percentage deviation from marginal cost is inversely proportionate to the item’s price elasticity
of demand” (Baumol and Bradford, 1970, p. 267). Ramsey pricing leads to static efficiency by maximizing
consumer surplus and total output consumed when marginal costs are lower than average costs, implying
fixed costs. Therefore, it has been applied mainly to utilities in industries where joint costs are high and
marginal costs are lower, including telecommunications (Ford et al., 1993), airlines (Martin-Cejas, 1997),
railroads (Sanchez-Borras et al., 2010), electricity (Bigerna and Bollino, 2016), health care (Melnick et al.,
1992), and other deregulated industries.

Price differentiation based on Ramsey principles suggests that drug prices should vary inversely with the
elasticity of demand (Danzon, 1997; Danzon and Towse, 2003a), assuming that the absolute price elasticity
of demand is negatively correlated with net income. In other words, the markup on marginal costs increases
when the price elasticity of demand decreases and vice versa. This means that high-income countries pay
higher prices sufficient to cover the cost of medicines, while low-income countries pay lower prices to
improve public access to medicines. Moreover, demand in high-income countries is more inelastic to price
changes than in low-income countries.

Both customers and firms are better off with Ramsey prices than with uniform prices (Danzon, 1998). If
a uniform price applies to all, regardless of the elasticity of demand, price-sensitive customers will limit their
consumption more than price-insensitive customers. Moreover, highly price-sensitive customers might exit
the market, reducing aggregate output and thus social welfare. Uniform prices could also hinder pharmaceu-
tical R&D in the long run. If differentiated prices are charged based on the Ramsey principle, companies can
exploit the willingness to pay of different income groups. Since differential pricing varies with the elasticity
of demand, companies can raise more funds for R&D by keeping in the market customers whose markup is
below the uniform price but above marginal cost.

The literature theoretically confirms the superiority of Ramsey prices in terms of welfare, while empirical
evidence is sparse. Danzon (1997) conducts a theoretical analysis with several firms and products to compare
the welfare effects of Ramsey prices and marginal cost prices in the US and the EU. She shows that price
differences in the U.S. can be explained by the price elasticity of demand, which is consistent with Ramsey
pricing. This is mainly because the drug market in the U.S. is relatively competitive thanks to various
health plans that can reflect patient preferences. In the EU, however, the market is structured differently.
Here, the government usually acts as the single-payer and exploits its monopsonistic position. Therefore,
prices may differ from the optimal Ramsey prices. Danzon and Towse (2003a) emphasize that marginal cost
prices cover short-run production costs but cannot generate sufficient funds to finance pharmaceutical R&D;
therefore, patent protection guarantees prices above marginal costs, ensuring sustainable incentives for R&D
activities. They argue that patents do not necessarily lead to higher prices if manufacturers use differential
pricing based on Ramsey principles. Barros and Martinez-Giralt (2008) incorporate insurance costs into
Ramsey pricing to investigate how different insurance coverage rates change optimal Ramsey prices. They
show theoretically that higher insurance coverage leads to higher Ramsey prices.

In the empirical literature, the existence of international Ramsey prices for drugs has previously been
tested indirectly by examining the relationship between drug prices and income. The basic idea is that if
Ramsey prices exist, one should observe a high positive correlation between drug prices and per capita in-
come (GDP), assuming that GDP is a good index of the price elasticity of demand (Yadav, 2010a). However,
the empirical evidence to date does not necessarily show strong correlations. Sherer and Watal (2002) ex-
amine whether pharmaceutical companies applied Ramsey principles to the prices of HIV/AIDS drugs in
the 1990s. They use multiple regressions to determine whether there is a strong relationship between prices
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and gross national product (GNP) per capita. The results suggest a weak relationship: an additional 1000$
of per capita income increases relative prices by 0.018. Similarly, Maskus (2001) uses international data
on 20 major molecules for the period 1994-1998 to analyze correlations between molecule prices and per
capita income. According to the results, 17 of 20 correlations are positive and six are above 0.5, suggesting a
positive but not very strong relationship between drug prices and income. Lichtenberg (2011) runs multiple
regressions to analyze price differences across countries using data on 6500 medicines in 38 countries in
the third quarter of 2008. He finds a positive correlation between prices and per capita income. However,
he highlights the large variability within low-income countries, such that lower-income citizens in some
countries pay higher prices than higher-income citizens.

In addition, several studies have found that drug prices do not necessarily vary inversely with per capita
income, implying that some low-income countries may pay higher prices (Waning et al., 2009a). Using
data from 14 middle-income countries and 3 high-income countries from 1999 to 2008, Morel et al. (2011)
computes Laspeyres and Paasche’s indices to examine whether drug prices vary systematically with income.
They find no such variation; instead, they report high variability in prices across countries. Petrou and
Vandoros (2016) calculates the Laspeyres index in an analysis of drug price differences in 11 European
countries. They find no evidence of any relationship between prices and income levels.

Despite the theoretical underpinnings, there is little consensus on whether Ramsey prices exist in phar-
maceutical markets. The literature shows that differential pricing is limited to some categories of drugs,
i.e., HIV/AIDS drugs, antimalarials, and vaccines. Essential drugs, on the other hand, generally remain ex-
empt from differential pricing (Yadav, 2010a). A key contradiction is that observed price differentials within
and/or across countries do not approximate Ramsey’s price levels (Danzon and Towse, 2003a) for two main
reasons. First, drug prices are highly influenced by third-party public buyers who exert monopsony power
in price negotiations (Kalo et al., 2013). In such a case, public buyers often resort to international reference
pricing to control and compare drug prices. Reference pricing is considered one of the practices that affect
differential pricing (Schmidt et al., 2001a; Danzon, 2018). Second, price differences across countries pro-
vide an incentive for cross-border pharmaceutical arbitrage or parallel trade (Schmidt et al., 2001a), which
may reduce the incentive to invest in pharmaceutical R&D and innovation and to adopt differential pricing
strategies (Danzon and Towse, 2003a; Jack and Lanjouw, 2005; Reisinger et al., 2019). Based on these
premises, the debate about the existence of Ramsey prices in pharmaceutical markets remains inconclusive.

2.1 Empirical Evidence of the Price Elasticity of Demand
This section reviews the literature on the price elasticity estimates as a reference point for our analysis.
To our knowledge, no empirical study has tested the inverse elasticity rule by analyzing the relationship
between international prices and price elasticities of pharmaceuticals. Thus, none of the studies reviewed in
this section considers Ramsey pricing.

Estimating price elasticity for pharmaceuticals is challenging given the complexity of the market and the
multitude of factors that influence patient and prescriber preferences. Accordingly, estimates are inconsistent
to some degree due to differences in calculation methods, demand definitions, price measurements, data
sources, and study periods (Li and Chollet, 2006).

A number of studies have estimated the price elasticity of demand for drugs at the patient level by ex-
ploiting single-country individual-level data from natural experiments of copayment shares of insurance
plans (health plans). Such studies analyze the price response (own-price elasticities) of different groups of
drugs or the number of prescriptions in relation to changes in insurance copayments. Accordingly, these
studies cover only the insured population, thus, can be referred to as coinsurance elasticity, as in Manning
et al. (1987). The RAND Health Insurance Experiment, conducted in the U.S. in the 1970s, is the best-
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known study in this area because of its randomized sample. The price elasticity of demand is estimated to
be -0.2 with respect to all health care, including prescription drugs (Manning et al., 1987). Other studies
estimate the price elasticity of demand with respect to total drug costs to range from -0.33 to -0.12 (Gilman
and Kautter, 2008; Chandra et al., 2014; Brot-Goldberg et al., 2017). Some studies have measured price
elasticity by drug class. Goldman et al., 2004, for example, estimates elasticities with respect to the number
of drug days supplied and finds the following: NSAIDs (-0.45), antihistamines (-0.44), antihyperlipidemics
(-0.34), antiasthmatics (-0.32), antihypertensives (-0.26), antidepressants (-0.26), and antidiabetics (-0.25).
Landsman et al. (2005) measure elasticities with respect to number of prescriptions and finds lower elastic-
ities for drugs for asymptomatic conditions such as ACE inhibitors, statins (from -0.10 to -0.16) and higher
elasticities for drugs for symptomatic conditions such as COX -2 inhibitors, NSAIDs, SSRIs (from -0.24 to
-0.60).

However, Yeung et al. (2018) criticize the existing practice because, in a natural experiment with changes
in copayments, cross-price elasticities must also be taken into account, since drugs are likely to have com-
plements and substitutes whose prices are also affected by the same change in copayment. Consequently,
own-price elasticities cannot be estimated accurately because ceteris paribus is violated. Yeung et al. (2018)
propose a value-based formulary –which includes both the prices of the drug itself and its complement and
substitute products– to overcome such an endogeneity problem when using data from natural experiments.
They report an overall price elasticity for drugs of -0.16. Another line of studies uses the instrumental vari-
ables method to generate exogenous variation and estimate price elasticities ranging from -0.14 to -0.4 (Ellis
et al., 2017; Einav et al., 2018).

To our knowledge, the only cross-country empirical study of demand elasticities is that of Danzon,
Mulcahy, et al. (2015). They estimate cross-country income elasticities for drugs used to treat HIV/AIDS,
malaria, and tuberculosis, for both originator and generic drugs. They find a positive but overall low income
elasticity (0.2) for all countries, 0.4 for originator drugs and 0.6 for generics. For MLIC, the average income
elasticity is 0.15 and is neither significant nor negative for originator drugs.

Controlling for cross-price elasticities is crucial for estimating drug price elasticities. The method pro-
posed in this study adequately accounts for the prices of substitutes and complements to provide reliable
estimates of cross-price and own-price elasticities in the same regression framework. To the best of our
knowledge, the present work is the first to control for the cross-price elasticity of each drug by simultane-
ously considering the national market and the time dimension. This gap in the literature is mainly due to
the lack of an appropriate method to estimate own-price elasticities by taking into account the prices of all
other drugs. The difficulty lies mainly in two aspects: the high granularity and the lack of regularization. In
other words, the analysis of drugs grouped in many molecule-country pairs requires the construction of an
extensive simultaneous equation model that includes in each equation the price of all other products in all
other countries, potentially introducing a large number of confounding factors into the model. This makes
the estimation infeasible both because of the huge computational costs and the biases in the estimates. These
problems are solved with the method DDML which uses regularization techniques (LASSO) to remove the
bias due to potentially high-dimensional confounders and avoid computational inefficiencies thanks to its
optimized design9.

3 Theory
In principle, cross-country differential pricing based on Ramsey principles can only be implemented if the
price elasticities of demand exhibit some degree of variation across countries. One major reason for price

9See Semenova et al. (2021) for more details.
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elasticities to vary is cross-country income inequalities. The marginal utility of money is expected to be
higher in MLICs, which causes higher price sensitivity, i.e., price elastic demand, than it is expected to
be in HICs. As a result, much of the literature has used GDP as a proxy for own-price elasticity. In our
view, this correlation rests on an oversimplified assumption that overlooks the complexity of factors shaping
consumption decisions and inter-product relationships, including cross-price elasticities and the share of the
population with insurance in a given country. For instance, in HICs, broad insurance coverage reduces con-
sumers’ price sensitivity, whereas in MLICs, out-of-pocket payments may dominate, raising price elasticity
among uninsured consumers. If the insured share consists largely of wealthy citizens with private insurance,
a monopolist may choose to serve only this segment, excluding poorer consumers and thereby undermin-
ing the expected response of elasticity to a GDP shock. Further details on this example are provided in
the Appendix. Moreover, as briefly overviewed in Section 2, the literature provides mixed results on the
relationship between pharmaceutical prices and GDP per capita income, with positive (Lichtenberg, 2011),
negative (Waning et al., 2009a), and neutral results (Petrou and Vandoros, 2016). In this regard, we first
analyze whether the latter relationship is credible in a complex economy (Section 3.1). We then move to
studying the Ramsey pricing of pharmaceuticals in different income levels across countries (Section 3.2).

Section 3.3 complements Section 3.2 by examining within-country differential pricing under the same
framework. In this setup, unlike in the first part of the theory, the assumption of independent demand no
longer applies. The demand for branded and generic drugs is interdependent due to cross-elasticities. As a
result, the Ramsey problem is adjusted accordingly.

3.1 On Using GDP per capita as a Proxy of Own-Price Elasticity
The following assumptions hold for a representative MLIC, L and a representative HIC, H.

T.1 ρB + ρG = 1, meaning total pharmaceutical consumption is normalized to 1 and is split between
branded (ρB) and generic (ρG) drugs (i.e. ρB,ρG represent shares of a consumer’s drug basket al-
located to branded and generic products, respectively.).

T.2 There is a numeraire good, y, consumed alongside drugs and whose consumption is denoted by Cy.

T.3 Insurance reduces the effective price of drugs by covering part of the cost, leaving consumers’ income
largely unaffected. Let δi denote the proportion of drug costs covered by insurance for a consumer
group l, where l ∈ {LR,LP} in L and l ∈ {HR,HP} in HICs, representing the rich and poor segments
in the country. Price distortions are allowed due to the presence of insurance. In other words, moral
hazards are present following Martínez Giralt and Barros (2006). 10.

T.4 Preferences are non-homothetic11. Heterogeneity in health expenditure across income countries is
a well-established fact in the pharmaceutical economics literature (Blazquez-Fernandez et al., 2014;
Wagstaff, 2002; Adebayo et al., 2015). We accordingly modelled the utility function as reflecting
non-homothetic preferences according to income status. Other evidence can be found, for instance in
Adebayo et al. (2015) who found that, among others, education and income status influence insurance
coverage and demand of drugs in medium and low-income countries.

The notation of Appendix A is followed. Furthermore, our focus is firstly within country and molecule12.
10The reader is referred to the formal derivation of the Appendix A.
11The analysis naturally extends and simplifies in case of homothetic preferences (Armstrong and Vickers, 2018).
12Notice that if a within-country, between-molecule analysis, rather than between-product analysis within the same molecule as we

are doing, is conducted, the results are simplified because the cross-elasticities between molecules are assumed to be zero, and the
classical Ramsey solution applies in this case.
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To provide the reader with some context for the consumer decision, we ask how people split their drug
spending between the branded (B) and the generic version (G) of that same drug. We assume they’re gross
substitutes. Insurance matters because people face effective prices after copay: with the same copay rate on
branded and generic, their relative price doesn’t change and the split is driven by posted prices and tastes;
with different copays, the cheaper effective option gets a bigger share. To avoid mechanically inducing
branded–generic substitution via coverage, we assume a common copayment across types. Preferences are
non-homothetic (income-sensitive): in the isoelastic case, as groups become better off, they may reweight
toward the drug type whose appeal grows more with income (e.g., slightly more branded if its taste weight
rises with income). Conceptually it’s a two-step problem: the broader decision of “how much to spend on
drugs vs other goods” sits outside; inside this molecule we just decide the branded against generic split based
on effective relative prices and income-driven tastes.
Following Hanoch (1975) preferences are represented by a non-homothetic CES utility aggregator:

1 = ∑
k∈{B,G,y}

( fk(U))
1
σ C

σ−1
σ

k,l ,

where k ∈ {B,G,y} indexes branded drugs (B), generic drugs (G), and a numeraire good that represents the
consumption of all other goods (y), fk(U) is an income-dependent taste parameter, and σ > 1 represents the
elasticity of substitution and l ∈ {HR,HP,LP,LR}. We acknowledge here an implicit assumption of the CES
model: the substitution elasticity is common, but Marshallian price elasticities are allowed to differ across
groups through budget shares.
The budget constraint for each consumer group l is:

P̃B,l ρBQl + P̃G,l ρGQl + Cy,l = Il , (1)
ρB +ρG = 1, Ql ≥ 0 (2)

ρB and ρG are the shares of the drug basket devoted to branded and generic products, respectively; Ql is the
scale (total quantity or expenditure) of drug consumption for group l. The level-form variables are recovered
via CB,l = ρBQl and CG,l = ρGQl . We keep the Ck,l notation in the Appendix A.1 because the algebra of
the CES aggregator, elasticities, and Ramsey pricing is far cleaner when everything is expressed directly in
quantities—shares and scale would have to be re-combined at every step. y is priced at 1 (normalized). Il is
the income of consumer group l with IH >> IL, and the effective prices with insurance are:

P̃B,l = (1−δl,B)PB, P̃G,l = (1−δl,G)PG

with δl,B ≤ δl,G and δl,B + δl,G ≤ 1. This assumption implies that insurers cover a fixed amount, which at
most entirely covers the cost of branded and generic drugs purchased by the consumer. The latter amount is
generally covered unevenly between generics and branded drugs. The share covered for generics is higher
than that for branded drugs, as insurers have greater incentives to cover generics—all else being equal in
terms of therapeutic efficacy. Thus, for a given income Il , insurance coverage affects the allocation between
ρB and ρG based on the effective prices P̃B,l and P̃G,l , influencing the choice of branded versus generic drug
consumption differently in H and L. Indeed, in high-income country H, widespread insurance coverage
results in high effective insurance rates across all social strata, substantially reducing out-of-pocket costs for
both branded and generic drugs i.e. δH,k > δLR,k > δLP,k k ∈ {B,G} (van Hees et al., 2019).

In this context, let El total expenditure (income) of group l and define the budget share sk,l ≡ P̃k,lCk,l/El

9



(see Appendix A). As derived in the Appendix, in this CES demand system, the Marshallian own-price
elasticity is εkk,l =−σ(1− sk,l), and the income (expenditure) elasticity is

η
Ck,l
El

= σ +(1−σ)
eik
ēil

, ēil ≡ ∑
m∈{B,G}

sm,l eim,

where eik is the drug-specific income-elasticity parameter and ēil is its share-weighted average for group l.
Differentiating εkk,l =−σ(1− sk,l) with respect to lnEl and using d lnsk,l

d lnEl
= η

Ck,l
El

−1 yields

d εkk,l

d lnEl
= σ sk,l

(
η

Ck,l
El

−1
)
,

so, holding other prices fixed, higher income moves the demand elasticity, specifically making it less elas-
tic (own elasticity less negative) for luxuries and more elastic for necessities. The magnitude scales with
σ and the current budget share sk,l . In a within-country group l, within-molecule framework, whether

income changes induce changes in elasticity hinges on two conditions: (i) sk,l ̸= 0 and (ii) η
Ck,l
El

̸= 1. Ac-
cordingly, GDP per capita is a poor proxy for own elasticities whenever most of the drug basket is a near
necessity within group l in that country and within that molecule. In that case, the budget share of a given
molecule/category changes little as income varies – so η

Ck,l
El

≈ 1 and the derivative above is close to zero.
A further subtle but important point concerns the rationale for approximating own elasticity with GDP

per capita: high-income individuals are assumed to have inelastic demand for pharmaceuticals, whereas
low-income individuals are assumed to have more elastic demand. A plausible mechanism is wealth and the
availability of private insurance. However, the extent to which the insured share of the population "depends
on income" is crucial for the validity of this approximation. Appendix A.4 elaborates: in settings where the
rich are insured and the poor are not – an eventuality that typically verifies in MLICs with the absence of a
public insurance scheme (Hooley et al., 2022) –, the rich may continue to treat drugs as near-necessities (so
η

Ck,l
El

≈ 1), while the poor substitute toward the outside good y, driving their share sk,l to zero i extreme cases
13. The result is an overall lack of relationship between GDP per capita and elasticity. Another consequence
of this case – as shown in Appendix A.4 – is that prices do not shift as a consequence of GDP shocks.

Although the analysis above is within a country–group and a single molecule, the approximation of
elasticities via GDP per capita is more often seen in cross-country studies. This entails moving from a
within–country group, within-molecule setting to a cross-country, within-molecule comparison. We will do
so in a simplified scenario. In particular, let countries be indexed by c, molecules by k ∈ {B,G}, and within-
country groups by l. For group l in country c, Appendix A already delivers the own-price elasticity (with
respect to the effective price P̃k,l,c = (1−δl,k,c)Pk,c) which we will rewrite here adding the country subscript
for underlying that it refers to a specific country c

εkk,l,c =−σ
(
1− sk,l,c

)
,

d εkk,l,c

d lnEl,c
= σ sk,l,c

(
η

Ck,l,c
El,c

−1
)
,

where sk,l,c ≡ P̃k,l,cCk,l,c/El,c and η
Ck,l,c
El,c

=σ +(1−σ)eik/ēil,c. To turn those group elasticities into a country-
level number, the idea is to take a weighted average, giving more weight to groups that buy more of that
molecule. This averaging only makes "apples-to-apples" sense if three things hold. Namely, we assume that

13Appendix A.4 considers only negative shocks to GDP per capita. However, in our simplified example, if GDP per capita increases,
the group LR would still treat drugs as near necessities, whereas whether sk,LP tends to zero depends on whether a simultaneous price
response (or other forces) offsets the budget gain of LP.
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everyone is playing by the same substitution rule σ , so a one-point change in price means the same kind of
behavioral pull everywhere, otherwise, mixing elasticities would blend different behaviors. Sensitivity must
be with respect to the same notion of price (i.e, effective price after copay), so we’re not averaging reactions
to posted prices in one place and net prices in another. Finally, when we average, we hold the weights (who
buys how much of what) fixed, so changes in the average aren’t just driven by who happens to buy more this
year; they reflect genuine differences in price sensitivity, not shifting mix. A simple example may clarify
the latter point. Consider a single molecule k in country c with two groups l ∈ {R,P} (Rich, Poor). Let the
within–country, within–molecule own-price elasticities (with respect to the effective price. Notice however
that copayment rates are fixed) be εkk,R,c = −0.8 and εkk,P,c = −1.6. Denote the group weights within
molecule k by ωl|k ≡Ck,l,c/∑ j Ck, j,c. If composition is allowed to vary by country, the market elasticity for
molecule k in country c is the share-weighted average εmkt

kk,c = ωR|k εkk,R,c + ωP|k εkk,P,c. Suppose Country
A has (ωR|k,ωP|k) = (0.8,0.2) and Country B has (ωR|k,ωP|k) = (0.2,0.8). Then εmkt

kk,A = 0.8(−0.8) +
0.2(−1.6) = −0.96, εmkt

kk,B = 0.2(−0.8)+0.8(−1.6) = −1.44. The difference (−0.96 vs. −1.44) is
largely compositional (who buys how much), not behavioral (how sensitive each group is). Assumption A.3
below removes this confounding by fixing the weights to a common reference {ω̄l|k} (e.g., a base-country
or base-year mix) and defining the comparable aggregate.
Formally, to compare elasticities across countries, we impose three additional restrictions:

A.1 Common curvature: the substitution parameter is invariant across countries, σc = σ .

A.2 Aligned price base: all elasticities are expressed with respect to the same price notion. We keep the
effective-price basis used above and take δl,k,c as policy-determined and controlled for in cross-country
comparisons.14 Results are invariant after converting εP

kk,l,c = (1−δl,k,c)εkk,l,c.

A.3 Composition fixed: when aggregating, the quantity weights are held constant across countries. Within
molecule k, the group weights are ωl|k ≡ Ck,l,c/∑ j Ck, j,c (taken as fixed in c); across molecules, the
country weights are πk ≡ Qk,c/∑ j Q j,c with Qk,c ≡ ∑l Ck,l,c (also fixed).

It is moreover important to notice that moving from group-level to country-level (market) objects will
use quantity additivity (and therefore does not necessitate of particular functional forms for the utility). This
is exactly in accordance with the derivation in Appendix A which assumes linear aggregation of demand and
elasticities across subgroups, that the posted prices Pj,Pk and costs c j are common across all consumer seg-
ments l (so derivatives are taken with respect to the same price), constant marginal costs, and independence
of demand responses between segments.

Under A.1–A.3, the market own-price elasticity for molecule k in country c is the quantity-weighted
average

ε
mkt
kk,c = ∑

l
ωl|k εkk,l,c,

and the country-level average own elasticity is

ε̄c = ∑
k

πk ε
mkt
kk,c = ∑

k
∑

l
πk ωl|k εkk,l,c.

Relating ε̄c to GDP per capita Yc requires an income–GDP scaling. Let

d lnEl,c

d lnYc
= κl with κl > 0,

14Equivalently, one can convert to posted-price elasticities via εP
kk,l,c = (1−δl,k,c)εkk,l,c; all statements below then carry through with

εP
kk,l,c and the same weights.
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so that a change in Yc proportionally shifts group l’s expenditure. Differentiating and using Appendix A
gives the cross-country slope

d ε̄c

d lnYc
= ∑

k
∑

l
πk ωl|k σ sk,l,c

(
η

Ck,l,c
El,c

−1
)

κl .

This delivers a direct, model-consistent link between the country average own elasticity and income.
Notice that even under A.1-A.3 and the scaling above, the derivative is a weighted sum of terms σ sk,l,c (η

Ck,l,c
El,c

−

1)κl . It will be small whenever (i) dominant buyers treat the basket as near necessity (η
Ck,l,c
El,c

≈ 1); (ii) rele-
vant molecule shares are low (sk,l,c small); and/or (iii) positive (luxury) and negative (necessity) contributions
offset across (k, l) under the fixed weights πkωl|k. In those (empirically plausible) cases, d ε̄c

d lnYc
is close to

zero, yielding a weak (essentially flat) cross-country relationship between average own-price elasticity and
GDP per capita despite the within-group mechanics above.

3.2 Ramsey Pricing with Different Income Levels
The following theoretical model explores the efficiency of Ramsey pricing in countries with different income
levels, i.e., HIC and MLIC, by focusing on minimizing deadweight loss (DWL) relative to total welfare 15.

A single global firm supplies the product in both markets with constant marginal cost and no binding
capacity constraints. Markets are separable: demand in H does not directly affect L, and vice versa.
A supra-national Ramsey regulator sets posted prices by country with the goal of maximizing social welfare
across H and L. A single planner with a single break-even constraint is initially adopted as a benchmark
because of the possibly confounding roles of heterogeneous shadow prices. Our goal is to study how Ram-
sey pricing allocates markups across countries. A single supra-country regulator that sets country-specific
prices subject to one firm-wide break-even constraint delivers a transparent cross-market Ramsey rule with
a common shadow cost (µ) that can be easily compared to the case if each country had its own regulator
(and its own cost-coverage or budget constraint). The latter case is equivalent to the case of a single planner
facing asymmetric budget pressure (or places different social weights) by country. This would imply that
each market would generally have a different shadow cost (µH ,µL). As we will see considering this furrther
source of heterogeneity could flip the results with respect to the benchmark case of a single shadoww cost
µ .

In each country, market demand is downward sloping and summarizes both clinical need and financial
access. Insurance coverage and cost-sharing shape observed demand: in H, broader insurance and lower
cost-sharing make demand less price sensitive; in L, heavier reliance on out-of-pocket payments makes
demand more price sensitive. We treat these insurance wedges as already embedded in each country’s
demand since our aim in this Section is more on the efficiency of Ramsey pricing in H and L.

Our analysis focuses solely on regulated outcomes under the supra-national planner. Unregulated monopoly
behavior is used as a benchmark. Efficiency is evaluated within each country using the share of deadweight
loss in total surplus, computed at the regulated prices. This metric lets us compare how much of the potential
surplus is lost to price-induced distortions in H versus L, abstracting from market size.

15A similar measure of efficiency in the pharmaceutical market was employed by Guell and Fischbaum (1995) and Guell and
Fischbaum (1997) to evaluate various policy strategies aimed at reducing the monopoly power of pharmaceutical firms in the U.S.
market. However, their analysis focuses on a single market context. In this framework, a regulator sets prices for a multiproduct
monopolist to maximize social welfare while ensuring cost coverage. See also Cutler and Marzilli Ericson (2010).

12



T2.1 For each country c ∈ {H,L}, the market demand for the molecule as a function of the posted price P
is isoelastic:

Qc(P) = Ac P−εc , Ac > 0, εc > 1.

(Insurance wedges are absorbed into the scale parameter: if effective demand is Q̂c(P̃) = Âc P̃−εc with
P̃ = (1−δc)P, then Qc(P) = AcP−εc with Ac ≡ Âc(1−δc)

−εc .)

T2.2 A single supra-country Ramsey planner sets posted prices PR,c to maximize a weighted sum of country
welfares subject to one firm-wide break-even constraint (cost coverage).
The regulator sets posted prices PR,c satisfying PR,c−MC

PR,c
= µ

εc
with a common µ ∈ (0,1).

T2.3 We assume that most of the drug basket is not a near necessity within group of income people in
that country and within that molecule, so that according to Section 3.1 we can safely assume that εL >
εH > 1. The latter is partly confirmed by the literature (Baltagi and Moscone, 2010). A consequence of
εL > εH > 1 is that PR,H > PR,L due to the presence of the super-country regulator. These observations
also align with the evidence that countries having higher co-insurance rates usually face higher prices
under Ramsey pricing (Martínez Giralt and Barros, 2006).

T2.4 A brief study is dedicated also the case when there is not a regulator but an unregulated monopolist
firm. In that case, the monopolist’s marginal cost is constant and common across countries: MC > 0.
Namely, the marginal cost (MC) curve is horizontal, reflecting constant marginal costs. For simplicity,
we assume that the unregulated monopolist regulator exploits economies of scale, meaning that the
cost of producing the last unit is equal to the cost of producing previous units (Cameron et al., 2009;
Chaudhuri, 2012; Mackintosh et al., 2015).

In the unregulated monopolist case, the posted price would be equivalent to the monopoly price denoted
as Pm,c for distinguishing it from the regulated posted price PR,c. Namely, for each country c ∈ {H,L}, let
(effective) market demand be isoelastic with the form specified in Assumption T2.1. Let inverse demand be
Pc = Pc(Q) and define total revenue T Rc(Q) = Pc(Q)Q. The (Marshallian) price elasticity is

ηc ≡ dQc

dPc

Pc

Qc
< 0, εc ≡ |ηc| > 0.

Differentiating T Rc and using 1
ηc

= (dPc/dQc)(Qc/Pc) yields

MRc ≡ dT Rc

dQc
= Pc + Qc

dPc

dQ
= Pc

(
1+

1
ηc

)
= Pc

(
1− 1

εc

)
.

Under constant marginal cost MC > 0, a profit-maximizing monopolist sets MRc = MC, so

Pm,c

(
1− 1

εc

)
= MC ⇐⇒

Pm,c −MC
Pm,c

=
1
εc

⇐⇒
Pm,c

MC
=

εc

εc −1
.

If instead prices are chosen by a Ramsey planner with a binding revenue (or cost-coverage) constraint, the
first-order condition implies the inverse-elasticity rule

PR,c −MC
PR,c

=
µ

εc
, µ ∈ (0,1) common across markets,
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so that PR,c/MC = εc/(εc −µ); the monopoly formula is recovered as the special case µ = 1. In our frame-
work, we will denote PSc = (PR,c −MC)Qc(PR,c) as the market-level operating surplus earned by the single
global firm from country c at the regulator-set price—i.e., margin times quantity (before fixed/R&D costs).
The Ramsey planner’s single break-even constraint applies to the sum ∑c PSc (not to each PSc individually),
which yields a common shadow cost µ and the cross-country inverse-elasticity pricing rule.

Proposition 1:
Under Assumptions (T2.1–T2.3), define consumer surplus (CS), producer surplus (PS), and
deadweight loss (DWL) in country c by

CSc =
∫

∞

PR,c

Qc(P)dP, PSc =(PR,c−MC)Qc(PR,c), DWLc =
∫ PR,c

MC
Qc(P)dP−(PR,c−MC)Qc(PR,c).

Under isoelastic demand Qc(P) = AcP−εc and Ramsey pricing
PR,c

MC
=

εc

εc −µ
, define

tc ≡
PR,c

MC
=

εc

εc −µ
.

Then the regulated and competitive quantities are

QR,c ≡ Qc(PR,c) = AcP−εc
R,c = Ac t−εc

c MC−εc , Q∗
c ≡ Qc(MC) = AcMC−εc .

Closed-form expressions:

CSc =
Ac

εc −1
P1−εc

R,c =
Ac

εc −1
t 1−εc
c MC1−εc ,

PSc = (PR,c −MC)QR,c = Ac(tc −1)t−εc
c MC1−εc ,

DWLc =
Ac

εc −1

(
MC1−εc −P1−εc

R,c

)
−(PR,c−MC)AcP−εc

R,c =AcMC1−εc

[
1− t 1−εc

c

εc −1
− (tc −1)t−εc

c

]
.

Hence the efficiency ratio

DWLc

CSc +PSc
=

1− t 1−εc
c

εc −1
− (tc −1)t−εc

c

t 1−εc
c

εc −1
+(tc −1)t−εc

c

, tc =
εc

εc −µ
.

For any fixed µ ∈ (0,1], this ratio is strictly decreasing in εc > 1 (more elastic demand ⇒ lower
DWL share). Consequently, if εL > εH ,

DWLL

CSL +PSL
<

DWLH

CSH +PSH
.

Notice that Proposition 1 is not necessarily true for every functional form of the demand. For instance, in
the linear case, we should rely on a parallel-shift assumption for the Proposition to apply 16. Thus Proposition

16To illustrate this point, let country c have linear inverse demand P = αc −βcQ and constant MC. Then

Q∗
c =

αc −MC
βc

, Qm,c =
αc −MC

2βc
⇒ ∆Qc ≡ Q∗

c −Qc
m =

αc −MC
2βc

.
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(1) implies that, with a unique shadow price µ the share of DWL relative to total welfare is higher in the
country L, where demand is more elastic.
This result is however not definitive as, more realistically, the regulator would account for the heterogeneity
of H and L facing asymmetric budget pressure. In this case Assumption (T2.2) should be restated as follows:

T2.2’ A supra-country planner sets posted prices PR,c to satisfy the country-specific Ramsey rule

PR,c −MC
PR,c

=
µc

εc
, µc ∈ (0,1], µc < εc,

where µc summarizes the planner’s (possibly asymmetric) budget pressure / social weights for coun-
try c. With one supra-country regulator and one firm-wide break-even constraint, there is a single
Lagrange multiplier (budget tightness)17.

Proposition 2:
Let Assumptions (T2.1),(T2.2’),(T2.3),(T2.4) hold. Thus, Ramsey rule is country-specific:

PR,c −MC
PR,c

=
µc

εc
, εc > 1, 0 < µc < εc, c ∈ {H,L}.

Retain all definitions from Proposition 1 and set

tc ≡
PR,c

MC
=

εc

εc −µc
> 1, Rc ≡

DWLc

CSc +PSc
.

For each c,

Rc+1=
εc −µc

εc(1+µc)−µc

(
εc

εc −µc

)εc

, equivalently Rc =
εc −µc

εc(1+µc)−µc

(
εc

εc −µc

)εc

−1.

where on the domain {εc > 1, 0 < µc < εc},

∂Rc

∂εc
< 0 and

∂Rc

∂ µc
> 0.

i.e. more elastic demand lowers the DWL share; bigger shadow prices µc raises it. Define

F(ε,µ)≡ ε −µ

ε(1+µ)−µ

(
ε

ε −µ

)ε

.

Hence ∆Qc depends on both the intercept gap (αc −MC) and the slope βc. Knowing only that D′(p)< 0, that L is “flatter” (βL < βH ),
or that εL > εH at Pm,c does not determine the sign of

∆QL −∆QH =
αL −MC

2βL
− αH −MC

2βH
.

A sufficient condition for ∆QL > ∆QH is
αL −MC
αH −MC

>
βL

βH
,

or, e.g., a parallel-shift assumption αL = αH (with common MC), in which case the flatter demand implies ∆QL > ∆QH . Absent such
restrictions, the inequality cannot be asserted from D′(p)< 0 and εL > εH alone.

17Here, µc ∈ (0,1] is not an arbitrary free parameter; it encapsulates the common break-even multiplier and the planner’s social
weight on country c. Algebraically we can treat µc as given (subject to 0 < µc < εc); economically the collection {µc} must be jointly
consistent with the single constraint and the weights. That consistency matters for identification, not for the closed-form formulas
below.
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Then Rc +1 = F(εc,µc). Hence, for countries H and L,

DWLL

CSL +PSL
>

DWLH

CSH +PSH
⇐⇒ F(εL,µL)> F(εH ,µH).

If εL > εH , there exists a unique µ∗
L ∈ (0,εL) solving F(εL,µ

∗
L) = F(εH ,µH), and therefore

DWLL

CSL +PSL
>

DWLH

CSH +PSH
⇐⇒ µL > µ

∗
L,

DWLL

CSL +PSL
<

DWLH

CSH +PSH
⇐⇒ µL < µ

∗
L.

Intuitively, Proposition 2 states that once we allow country-specific tightness, the ranking of DWL in
H and L is no longer pinned down by elasticities alone. The DWL share in country c depends on two
forces: (i) how elastic demand is (εc), which reduces inefficiency as it rises, and (ii) how tight the planner’s
budget/coverage pressure is (µc), which raises inefficiency as it rises because it forces a higher markup
PR,c/MC. As seen in Proposition 1, with εL > εH , the usual prediction (with equal tightness) is

DWLL

CSL +PSL
<

DWLH

CSH +PSH
.

But once tightness differs by country, the ranking is no longer mechanical: if the low-income country faces
sufficiently higher tightness µL than the high-income country’s µH , its higher markup can more than offset
its greater elasticity, making the inefficiency share higher in L than in H. Formally, holding (εH ,µH) fixed
and given εL > εH , there exists a unique threshold µ∗

L ∈ (0,εL) such that the two DWL shares are equal at µ∗
L .

If µL > µ∗
L , then L’s DWL share exceeds H’s; if µL < µ∗

L , it remains below. This threshold comes directly
from the strict monotonicities we proved: the DWL share falls with ε and rises with µ .
Consequently, whether Ramsey implies more inefficiencies in H or L depends on µc which however is un-
observed in our data.
In our analysis we found more evidence of Ramsey pricing in HICs than in MLICs. In our framework,
the country-specific tightness µc summarizes fiscal capacity, insurance coverage, and distributional weights.
Hence, the fact that Ramsey pricing is more evident in HICs than in MLICs is consistent with µH < µL : bet-
ter insurance and financing in HICs (i.e. low µH ) keep markups aligned with elasticities and the DWL share
small, whereas weak coverage and unequal incomes in MLICs (i.e. high µL) raise effective tightness, push
up markups for posted prices paid out-of-pocket, and—through exclusion—raise the DWL share despite
higher elasticities.

3.3 The Role of Own- and Cross-Price Elasticities in Pricing Dynamics of Generics
and Branded Drugs

In this section, we turn to analyzing own- and cross-price elasticities within countries to better understand
their direct relationship with prices. Fix a molecule m and a country–time cell; all objects refer to this
(m,c, t) cell. Let Im be the set of products (brand and generic) for molecule m, with nm = nB,m + nG,m,
Bm = {1, . . . ,nB,m} and Gm = {nB,m +1, . . . ,nm}, so Im = Bm ∪Gm and Bm ∩Gm = /0. Indices i, j denote
individual products (brand or generic) in the molecule’s set Im. Cross-molecule elasticities are set to zero,
so all sums ∑ j ̸=i below are over j ∈ Im \ {i}.Since the analyses below are within a molecule we avoid
repeating that the products that we refer to are ∈Im in order to ease up the notation. To be more transparent
on the subsequent paragraphs, when using subscripts B and G we are referring to a product i having the
attribute of being branded or generic respectively, e.g.:

pi =

{
pG if i ∈ Gm,

pB if i ∈ Bm,
epii =

{
epGG if i ∈ Gm,

epBB if i ∈ Bm,
MCi =

{
MCG if i ∈ Gm,

MCB if i ∈ Bm.
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Production is governed by a common, subadditive cost function C(q), reflecting economies of scale over the
relevant range of output. Given such cost subadditivity, a social planner aiming to maximize total consumer
surplus CS would find it optimal to allocate production to a single firm in order to minimize costs while
internalizing the cross-price dependencies among branded and generic drugs.

This subsection focuses specifically on price dynamics within a single country, which is why the country
subscript c is removed from the equations of this section. For a cross-country analysis the reader is referred
to Barros and Martinez-Giralt (2008). Conducting the analysis at the country level allows us to examine the
relation of both own-price and cross-price elasticities of generics and branded drugs on prices, a topic of
significant relevance in the literature as detailed in Section 1. This kind of analysis is particularly important
in understanding how generics compete both with each other and with branded drugs once patents expire.
As highlighted by the literature, the competition among generics becomes especially fierce post-patent ex-
piration, which has critical implications for pricing strategies and welfare. In this context, we theoretically
analyze three types of relationships—natural extensions of the Ramsey pricing framework and the substitu-
tion effects between branded and generic drugs – under the assumption that generic pharmaceuticals exhibit
higher own-price elasticities than branded pharmaceuticals due to their greater substitutability. (i) First,
we examine whether the own-price elasticity of generics is more strongly associated with their own prices
than the own-price elasticity of branded drugs is with theirs. (ii) Second, we investigate whether – under
a Ramsey policy – cross-price elasticities among generics exert a stronger influence on generic prices than
cross-price elasticities among branded drugs do on branded prices. In other words, both in (i) and (ii) we are
asking whether observed branded and generic prices behave as if they were chosen optimally (in the Ramsey
sense) given the (estimated) elasticities. The theoretical analyses described below will be based on the fol-
lowing assumptions: (e.1) based on Conrad and Lutter (2019), we assume that – within the same molecule,
country, and time period as in the present case – generic prices are, on average, approximately 73% lower
than branded prices; (e.2) the price of branded is, on average, higher than the price of generics, i.e. pB > pG;
(e.3) generics are, on average, more "own-elastic" than branded |epGG|> |epBB| (Yeung et al., 2018; Frank
et al., 2021); (e.4) |epkG| > |epkB| and |ep jG| < |ep jB|; (e.5) The marginal cost of branded drugs (MCB) is
higher than the one of generics (MCG). Based on Frank et al. (2021) and Frech et al. (2023), we will assume
that the marginal cost of branded drugs is 2 to 3 times higher than that of generics; (e.6) Similarly, MB > MG.

A discussion on the above assumptions is compelled. Generally, pharmacological research has demon-
strated that generics are as effective as branded drugs, particularly when critical factors—such as bioequiv-
alence and the role of excipients—are properly accounted for in clinical trials (Gallelli et al., 2013; Desai
et al., 2019; Jarusriwanna et al., 2024; Guru et al., 2025). However, exceptions do exist (Borgheini, 2003).
Switching from branded drugs to generics is not a widespread trend among patients. For instance, concerns
such as contamination in psychiatric medications have been reported (Desmarais et al., 2011), and both
physicians and retailers have noted complaints, often expressing skepticism about whether generics offer
the same efficacy as originator brands (Dunne et al., 2014). Indeed, physicians frequently avoid prescribing
generics due to perceived quality issues and uncertainties related to pharmacy-driven substitution (Prem-
anath and Kulkarni, 2024).18 Acceptance of generics tends to be higher among consumers with greater
educational attainment, whereas patients from lower socioeconomic backgrounds—often with less formal
education—tend to exhibit greater mistrust toward generics. Additionally, many in the general population
perceive the switching process itself as costly or burdensome (Steinman et al., 2007; Dunne and Dunne,

18For completeness, it is worth noting that in the U.S., insurance formularies generally favor generic drugs over branded alternatives.
For example, Dusetzina et al. (2020) found that 84% of Medicare Part D plans covered only the generic version of a drug, while
fewer than 1% covered only the brand-name version. However, in certain specialty drug contexts, patients may actually face higher
out-of-pocket costs for generics due to rebate structures and the design of Medicare’s coverage gap (Dusetzina et al., 2019).
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2015). Interestingly, the reverse phenomenon—switching from generics back to branded drugs—can also
occur, even in countries with strong generic promotion policies, such as Japan (Hamada et al., 2020). Thus
we conclude that, while epkG > epkB may be observed among more informed segments of the population, het-
erogeneous perceptions and switching frictions suggest that, on average, epkB > epkG—driven by physician
recommendations and the perceived high switching costs associated with common pathologies. Accordingly
we assume that, on average, ep jG < epkB, i.e. people generally prefer to switch from a branded drug to an-
other than to switch from a branded drug to a generic drug.
It is, hence, easy to see that, under the above justified assumptions that pB > pG, |epGG| > |epBB|, that
|epkG|> |epkB| and |ep jG|< |ep jB|.

As we will see, in this specific exercise, we focus at the product level and assume interdependent de-
mands of goods. This is done for the sake of completeness. As specified in Section 4.2 the cross-elasticities
between goods belonging to different molecules are assumed to be zero. However, in many empirical speci-
fications, researchers can control for molecule fixed effects, allowing the analysis to focus within molecules,
where cross-elasticities are not zero. In other words, the following theoretical specification is conducted
within a country and within a molecule, thus the assumption of independent demands typical of Ramsey
settings falls.
Ramsey pricing can apply in pharmaceutical markets where both branded and generic drugs are present,
provided that a centralized price-setting entity—such as a regulator or a multi-product monopolist—controls
pricing across interdependent goods and internalizes both own- and cross-price elasticities, which is the case
of the present setting 19

Specifically the following result – extending previous works on Ramsey pricing to the more complex
scenario of interdependent demands in presence of price distortions and heterogeneous goods– proved in the
Appendix A.3 holds
Proposition 3 (Optimal Ramsey markups with insurance and interdependencies in demand):

Consider two drug types k ∈ {B,G} and income groups l, with (i) separable preferences yielding
inverse demand in effective prices P̃k,l , (ii) interdependent demands, (iii) per-unit coverage δl,k
and fiscal distortion ξ , and (iv) a regulator maximizing W as in Eq. (A.5) subject to the break-
even constraint ∑k(Pk − ck)qk = F with multiplier λ , where qk = ∑l qk,l .
Let µi := Pi−ci

Pi
, then the Ramsey rule applies as follows:

Pk − ck

Pk
= ∑

j ̸=k
µ j M( j→k)

Höffler + ∑
j ̸=k

Mδ ,( j→k)
Höffler-corrected + IDA + SRC .

where

M( j→k)
Höffler :=−

q j

qk

ε̄ jk

ε̄kk

Pj

Pk
, Mδ ,( j→k)

Höffler-corrected :=
1+ξ

1+λ

q j

qk

ε̄δ
jk

ε̄kk

Pj

Pk
.

and

IDA :=
ξ δk +(1+ξ )ε̄δ

kk
(1+λ ) ε̄kk

, SRC :=− λ

(1+λ ) ε̄kk
.

19Theoretical foundations for this approach under interdependent demand are laid out in Höffler (2006), and extended to regulated
and multi-product environments by Schmidt et al. (2001b) and Danzon and Towse (2003b) Notice that we work in an institutional
regime. Throughout this subsection we adopt an administered-price regime: a centralized price setter (regulator/single payer) chooses
prices subject to a break-even constraint, so Ramsey–Boiteux conditions apply to both branded and generic drugs within a country.
In jurisdictions where generics face unconstrained Bertrand competition and prices are not administered, generic prices tend toward
marginal cost and the Ramsey rule ceases to describe their equilibrium (Danzon, Towse, and Mestre-Ferrandiz, 2015b); our analysis
should then be interpreted as (i) applying to branded drugs with residual market power, and (ii) providing a normative counterfactual
for generics. Empirically, when generics are effectively competitive, one may set MG ≈ 0, which collapses the generic-side cross terms
accordingly.
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In our data we do not have explicit information about health insurance directly in each country. Therefore
we cannot measure its distortion directly unless we consider it to be absorbed by the country-time fixed
effects. Setting insurance/distortion to zero in Proposition 3 (ξ = δ = 0) and identify notation µi := Pi−ci

Pi
≡

Mi, Pi ≡ pi, ci ≡ MCi, and ε̄ jk ≡ ep jk, the Ramsey–Boiteux markup condition within a country reduces to
the one in Höffler (2006)

Mi = − λ

1+λ

1
epii

− ∑
j ̸=i

M j
ep ji

epii

q j

qi

p j

pi
. (3)

where λ is the Lagrange multiplier, Mi is the relative markup of price over marginal cost, epii is the own-price
elasticity of demand for good i, and the second term aggregates cross-price elasticities ep ji with j ̸= i.20

Define

DR :=
λ

1+λ

1
epii

, CI := ∑
j ̸=i

M j
ep ji

epii

q j

qi

p j

pi
,

where DR is the (direct) Ramsey inverse-elasticity component and CI captures cross-product interactions
induced by demand interdependence. Using Mi = (pi −MCi)/pi, the exact price identity is

pi =
MCi

1+DR+CI
. (4)

For exposition, when |DR+CI| is sufficiently small we use the first–order approximation

pi ≈ MCi
[
1− (DR+CI)

]
= MCi

[
1− λ

1+λ

1
epii

−∑
j ̸=i

M j
ep ji

epii

q j

qi

p j

pi

]
, (5)

which truncates the geometric series (1+X)−1 = 1−X +X2 − ·· · at X := DR+CI. The approximation

error equals MCi · (DR+CI)2

1+DR+CI , so accuracy is high when |DR+CI| ≪ 1 (and 1+DR+CI > 0).21 In typical
pharmaceutical settings, epii < 0 implies DR < 0, and for substitutes ep ji > 0 together with epii < 0 and
M j ≥ 0 imply CI < 0, so DR+CI is negative and often small in magnitude. Hence, in what follows we
report comparative statics using the linear approximation (5). As a further argument in favor of the |DR+
CI| < 1 case, notice that DR will be likely negative and modest in magnitude (we maintain in any case
that 1 + DR +CI > 0 so the exact formula is also well-defined) given that, on average, own elasticites
of drugs are negative and 0 < λ

1+λ
< 1. Moreover, CI is negative for substitutes. Even in the case of

complements, CI is positive but likely contained such that DR+CI remains lower than 1. For instance,
(Duggan and Morton, 2010) show that even substantial insurance-driven changes in drug coverage, such as
under Medicare Part D, produce only moderate utilization responses—indirectly suggesting that real-world
cross-demand elasticities, including those arising from complementarity, are limited in magnitude. 22

pi = MCi

[
1− λ

1+λ
· 1

epii
−∑

j ̸=i
M j ·

ep ji

epii
·

q j

qi
·

p j

pi

]
(6)

The following analysis will involve ∂ pi
∂epii

. Importantly, ∂ pi
∂epii

is framed as a theoretical policy counter-
factual, without any causal claim. The estimated elasticities epii, obtained ex post from a prior demand

20We do not adopt Appendix A.3 here since it incorporates insurance-induced distortions; to keep the exposition focused we work in
the no-insurance case. The expression above is standard; see Höffler (2006) for derivation. It also nests the special case in Appendix A
when there is a single income group and ξ = δl,k = 0.

21From Mi = (pi −MCi)/pi we get pi = MCi/(1−Mi). Substituting Mi =−(DR+CI) yields pi = MCi/(1+DR+CI), i.e. Eq. (4).
Eq. (5) follows from the first–order expansion of (1+DR+CI)−1.

22Similar results, available upon request, are however reached for the case DR+CI > 1.
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model, are treated as descriptive summaries of demand responsiveness. Our goal is not to estimate the effect
of elasticity on price, but to examine whether observed prices are consistent with Ramsey-Boiteux pricing
logic. In this sense, the derivative is a diagnostic tool: it indicates how prices should respond to elasticity
under normative assumptions, without implying endogeneity or reverse causality. To enforce this argument
we highlight that when answering (i) and (ii) we will make use of the envelope theorem. For instance, in
line with the envelope theorem, the derivative ∂ pi

∂epii
will isolate the direct sensitivity of optimal price to own-

price elasticity, holding cross-price elasticities constant. Since our setting allows for the estimation of both
own and cross elasticities –as detailed in the methodological section– this comparison reflects a local policy
counterfactual under Ramsey logic abstracting from indirect effects through re-optimization.

We first focus on answering question (i). We provide here, in particular, a formal explanation for the con-
trasting results encountered in the literature when trying to address the effect of own elasticity on own price.
To understand the effect of own-price elasticity on price, we take the partial derivative of pi with respect to
epii. Differentiating term by term, the first term yields ∂

∂epii

(
− λ

1+λ

1
epii

)
= λ

1+λ

1
ep2

ii
, and the second term con-

tributes ∂

∂epii

(
−∑ j ̸=i M j

ep ji
epii

q j
qi

p j
pi

)
= ∑ j ̸=i M j

ep ji

ep2
ii

q j
qi

p j
pi
. Combining these, we study a within-country, drug-

by-drug comparative static: epii perturbs the ith Ramsey FOC while holding {p j} j ̸=i and {ep ji} j ̸=i fixed.

Because CIi contains p j/pi, the total derivative includes a feedback factor
(

1−MCi ∑
j ̸=i

M j
ep ji

epii

q j

qi

p j

p2
i

)−1
.

A full multi-product re-optimization would add cross-price adjustments d p j/depii; under moderate cross-
interactions (Assumptions (e.4)–(e.6)) these are second-order, so our ranking results for (i) are unaffected23

. We obtain

∂ pi

∂epii
=

MCi

[
λ

1+λ

1
ep2

ii
+ ∑

j ̸=i
M j

ep ji

ep2
ii

q j

qi

p j

pi

]
1−MCi ∑

j ̸=i
M j

ep ji

epii

q j

qi

p j

p2
i

. (7)

Without loss of generality, we can hence define the sets G ′ and B′ as follows: if product i ∈ G (i.e., i is a
generic good), then G ′ = G \{i} denotes the set of other generic goods; otherwise, if i ∈ B, we let G ′ = G .
Analogously, if i ∈B, we define B′ =B \{i} to denote the set of other branded goods; otherwise, if i ∈ G ,
we set B′ = B.
Notice that such partitions derive from simply splitting the sum over j into G ′ and B′ is therefore just a
relabelling of the Höffler-type cross terms by product class in Eq.(3).
These definitions allow us to partition the cross-elasticity terms into contributions from branded and generic
products, conditional on the identity of product i as follows:

∑
j ̸=i

M j
ep ji

ep2
ii

q j

qi

p j

pi
= ∑

k∈G ′
Mk

epki

ep2
ii

qk

qi

pk

pi
+ ∑

j∈B′
M j

ep ji

ep2
ii

q j

qi

p j

pi

23As aforementioned we adopt here a comparative-static scope. In an administered-price regime, the regulator chooses p =
(p1, . . . , pN) by solving all Ramsey FOCs jointly, G(p;ε) = 0. The exact response to a perturbation in the own elasticity εii is
d p/dεii = (I −H)−1u, where H := ∂G/∂ p is the Jacobian and u := ∂G/∂εii has support only on coordinate i. Our drug-by-drug ex-
periment holds {p j} j ̸=i and {ε ji} j ̸=i fixed; because CIi contains p j/pi, the ith equation features an own-equation feedback (1−Θi)

−1

with Θi := MCi ∑ j ̸=i M j
ε ji
εii

q j
qi

p j
p2

i
. Off-diagonal effects (how pk feeds into the ith FOC) enter only via loop terms of order H2 and higher;

under moderate cross-interactions (Assumptions (e.4)–(e.6)) these are second-order and do not affect the branded–generic ranking in
(i).
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This leads to:

Θi := MCi

[
∑

k∈G ′
Mk

epki

epii

qk

qi

pk

p2
i
+ ∑

j∈B′
M j

ep ji

epii

q j

qi

p j

p2
i

]
.

∂ pi

∂epii
=

MCi

[
λ

1+λ

1
ep2

ii
+∑k∈G ′ Mk

epki
ep2

ii

qk
qi

pk
pi
+∑ j∈B′ M j

ep ji

ep2
ii

q j
qi

p j
pi

]
1−Θi

. (8)

Assumption (e.3) implies that the own-price elasticity term λ

1+λ

1
ep2

ii
is smaller for generics because |epGG|

is larger than |epBB|. Now, the interesting aspect lies in comparing ∂ pi
∂epii

in the case where i is a generic good
(G) versus when i is a branded drug (B). However, the latter comparison remains ambiguous even un-
der assumptions (e.1)–(e.6) due to two opposing forces: one reflecting strong generic–generic competition,
and the other reflecting branded–branded substitution—each influencing price sensitivity in opposite direc-
tions.24 Also, because (1−Θi)

−1 may be larger for generics (lower pi) yet their Mk are smaller, the net
impact on ∂ pi

∂epii
remains theoretically ambiguous.

Hypothesis 1 (H1): The following holds:

H1.1 When controlling for cross-elasticities, generic pharmaceuticals exhibit higher own-price elasticities
than branded pharmaceuticals in absolute value.

H1.2 Under the Ramsey pricing framework within a country, whether branded or generic drug prices are
more sensitive to changes in own-price elasticity remains theoretically ambiguous. This ambiguity
stems from the trade-off between a larger direct elasticity component for branded drugs—due to lower
own-price elasticity in absolute terms—and stronger cross-substitution effects among generics, both
of which are weighted by market shares and relative price–quantity terms. The net effect depends on
the relative magnitudes of these opposing forces and cannot be signed without additional empirical
information.

Hence, the relationship between price and own-price elasticity remains ambiguous. Branded drugs, with
less elastic demand, are more affected by direct markup adjustments because Ramsey pricing allows higher
prices when consumers are less sensitive to price changes. As a result, even small shifts in elasticity can lead
to notable price changes (we refer to the term λ

1+λ
· 1

ep2
ii

here). In contrast, generics operate in a highly com-
petitive environment where many close substitutes exist. This makes their prices more responsive not just
to their own elasticity, but also to how they interact with other generics—i.e., cross-substitution effects (we
refer here to the sums in ep ji and epki). These effects amplify price responses, since changing the price of
one generic can shift demand significantly across others. (Laffont and Tirole, 2001). These two forces pull
in opposite directions, and without precise data on their relative strength, the overall pricing response to elas-
ticity changes cannot be determined a priori. Coherently, as shown in Appendix D, the relationship between

24Namely, the following relationships remain unknown to literature

∑
k∈G ′

Mk · epkB ·
qk

qB
· pk

pB

≥
≤ ∑

k∈G ′
Mk · epkG · qk

qG
· pk

pG

∑
j∈B′

M j · ep jB ·
q j

qB
·

p j

pB

≥
≤ ∑

j∈B′
M j · ep jG ·

q j

qG
·

p j

pG

as well as whether they compensate with the term λ

1+λ
· 1

ep2
ii

.
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price and own-price elasticity across molecule-country pairs –when controlling for cross-price elasticities–
appears ambiguous when considering all pharmaceutical products (Figure D.1). To further understand the
drivers of pricing behavior under Ramsey logic, we investigated the special case of an economy composed
solely of generic pharmaceuticals (Figure D.2). We focused on this scenario because generics constitute
a more homogeneous and competitive segment of the pharmaceutical market, where own-price elasticities
tend to be higher in absolute value (|epGG|≫ |epBB|) and prices are substantially lower than those of branded
drugs. This makes generics a theoretically cleaner environment to isolate the relationship between elasticity
and price, free from brand-related frictions. In such a setting, Ramsey pricing theory predicts that if demand
becomes less elastic—i.e., epGG becomes less negative—then the price should increase, as the inverse elas-
ticity term 1

ep2
GG

rises. Our empirical analysis (Figure D.2) confirms this theoretical intuition. Higher prices

are consistently associated with less negative elasticities (i.e., demand becomes less elastic), indicating that
the direct term 1

ep2
GG

dominates the overall expression for the partial derivative ∂ pG
∂epGG

, i.e. it overcomes the

influence of other generics in the economy on drug i = G (this aligns with the expectations in the literature
(Schmidt et al., 2001b; Danzon and Towse, 2003b; Danzon, Towse, and Mestre-Ferrandiz, 2015a)). Namely,
the contribution from the cross-elasticity terms, while present, does not overturn the sign of the relationship.

Secondly, we focus on question (ii). To address this, it is more convenient to rewrite Equation (6) as
follows:

pi = MCi

[
1− λ

1+λ
· 1

epii
− ∑

k∈G ′
Mk ·

epki

epii
· qk

qi
· pk

pi
− ∑

j∈B′
M j ·

ep ji

epii
·

q j

qi
·

p j

pi

]
where k ∈ G ′ (other generics) and j ∈ B′ (other branded).
The latter decomposition, makes it easier to distinguish the cases where the effect is taken with respect to a
branded or a generic product:

∂ pi

∂epki
=

−MCi Mk
1

epii

qk

qi

pk

pi

1−MCi ∑
j ̸=i

M j
ep ji

epii

q j

qi

p j

p2
i

(9)

∂ pi

∂ep ji
=

−MCi M j
1

epii

q j

qi

p j

pi

1−MCi ∑
ℓ̸=i

Mℓ
epℓi
epii

qℓ
qi

pℓ
p2

i

. (10)

The interested reader is referred to the Appendix D for the technical details leading to the above equali-
ties.
The derivatives in (9)–(10) imply that—under Ramsey pricing with interdependent demands—when goods
i and k (or j) are substitutes (epki,ep ji > 0) the optimal price of good i increases with stronger cross-
substitution: ∂ pi

∂epki
> 0 and ∂ pi

∂ep ji
> 0 (given nonnegative markups and a positive denominator). Intuitively,

greater substitutability means rival prices shift more demand toward i, loosening the revenue–welfare trade-
off on i and supporting a higher Ramsey price. The magnitude of this adjustment scales with rivals’ prof-
itability (πk = pkqk, π j = p jq j), the own elasticity and market size of i (epii, qi, pi), and the strength of
the cross-demand terms. Hence, for substitutes, the comparative statics are strictly positive irrespective of
whether i is branded or generic.
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Subsection D.1 in the Appendices recover criterion (D.8) from Eq. (9) (symmetrically for equation (10)):

SG > SB ⇐⇒ ∑k∈G ′ Mk

DG
>

∑ j∈B′ M j

DB
⇐⇒ ∑k∈G ′ Mk

∑ j∈B′ M j
>

DG

DB
. (11)

where SG(SB) represent is a simple index of how much, in total, other generics (branded) can move a
generic (branded) drug’s price once you account for the price brake Di on that drug. Specifically,

Di = 1+MCi ∑
m̸=i

Mm
|epmi|
|epii|

qm

qi

pm

p2
i

> 1.

=: 1+MCi Ki, Ki := ∑
m̸=i

Mm
|epmi|
|epii|

qm

qi

pm

p2
i
.

The left-hand side of (11) is the total “markup mass” among generic rivals; the right-hand side is the extra
dampening on the focal generic relative to the focal brand. Generics “win” (their cross-elasticities move
prices more) when generic rivals’ total markups are large compared with the generic’s dampening. Brands
“win” when brand rivals’ total markups are so large that they outweigh the brand’s stronger dampening.

We now try to understand the direction of the inequality. To do so we exploit assumptions (e.3)–(e.6).
Under (e.5), with MCB being 2–3×MCG, we typically have DB > DG (brands are more damped); and under
(e.3), because |epGG|> |epBB|, the ratios |epmi|/|epii| are smaller for the generic focal good, which tends to
reduce KG and hence DG relative to DB. These forces often tilt the comparison toward SG > SB, but the
conclusion is ultimately empirical because it depends on the realized sums of markups. In particular the di-
rection is determined mainly by competition forces in the ATC markets of the products under scrutiny. As an
example, in the limit of perfect competition in the generic segment (generic markups → 0), generic–generic
cross-price elasticities have no effect on generic prices pG: is pinned to marginal cost. Hence our comparison
is meaningful only when at least one side has positive markups (e.g., branded segment or regulated/tendered
generics). If brands retain positive markups, brand–brand cross elasticities affect branded prices while the
generic-side effect is zero; if both segments are competitive, both effects are zero.

Hypothesis 2 (H2): For substitutes and Di > 1, the branded (resp. generic) price is more responsive to
within–category cross–price elasticity shifts iff the corresponding within–category sensitivity index is larger:

∂ pB

∂ep jB
≷

∂ pG

∂epkG
⇐⇒ SB ≷ SG ⇐⇒

∑ j∈B′ M j

DB
≷

∑k∈G ′ Mk

DG
⇐⇒

∑ j∈B′ M j

∑k∈G ′ Mk
≷

DB

DG
.

In words: brand–brand (resp. generic–generic) cross elasticities move prices more than generics when
the cumulative rival markup on branded (generic) drugs exceeds the cumulative rival markup on generic
(branded) drugs after accounting for the side–specific price “brake” D. In the limit of perfect competition
for generics (Mk → 0), SG = 0 and the brand side weakly dominates.

Intuitively, Hypothesis 2 shows that which side’s prices move more –brands with other brands or gener-
ics with other generics – comes down to two forces: (i) the total markup at stake among that side’s rivals
(we call it the “push”) and (ii) the side-specific price “brake” D that dampens any adjustment. In multi-
product Ramsey with interdependent demand, markups are tied together through cross-elasticities, so a side
with larger cumulative rival markups has more scope to reallocate rents, while a bigger brake – i.e. if the
focal product is costly to make or small price changes trigger big quantity feedbacks – mutes the response.
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Thus, brand–brand cross elasticities move branded prices more when brand markup mass beats the brand
brake; generic–generic cross elasticities move generic prices more when generic markup mass beats the
(typically lighter) generic brake. In the limit of perfect competition for generics (generic markups → 0), the
generic index collapses and the brand side dominates mechanically. It is worth mentioning that this logic
mirrors multiproduct Ramsey with interdependent demands (Höffler, 2006) and the pass-through principle
that price responses scale with markups and a system “denominator,” while applying Ramsey reasoning to
the branded-vs-generic margin in pharma (Danzon and Towse, 2003b).
In many mature markets, generic shares are high and markets are fragmented, yet brand loyalty persists
(Berndt and Aitken, 2011; Panchal et al., 2012; Costa-Font et al., 2014), so branded products often retain
positive markups, while generics operate with thin margins. In those settings, the brand side typically dom-
inates (larger markup mass despite a heavier brake). By contrast, early post-patent or limited-entry/tender
settings can leave meaningful margins among generics and a lighter brake, making the generic side more
responsive. Empirically, these patterns align with (i) the post–Hatch–Waxman rise of generics alongside
enduring brand loyalty/segmentation , and (ii) evidence that increases in generic use can outpace decreases
in brand use due to segment effects and regulatory structures (Blankart and Vandoros, 2024) –both of which
support the plausibility of our criterion.

4 Empirical Analyses
We present below our empirical analysis. We acknowledge here that the analyses performed in this Section
are designed to detect the presence of Ramsey-like patterns, rather than to structurally estimate the full
model.
However the former is an interesting problem per se as the major challenge faced by the literature to detect
Ramsey-like structures within and between countries has been to identify and estimate own and cross-price
elasticities which is the main empirical effort of the Section.

4.1 Data
To estimate the own and cross price elasticities of pharmaceuticals, in line with the theoretical part above,
we utilise pharmaceutical data from IQVIA25, formerly IMS Health and Quintiles. The original database
comprises an unbalanced panel dataset. More precisely, it comprises 1.3 million product-level observations
covering about 45,000 different products in 34 countries over a varying number of quarters (from a minimum
of 2 to a maximum of 48) in the period from 2008 to 2020. The data contain various product-level informa-
tion, such as the active ingredient of the drug, the company that manufactured it, therapeutic information,
the generic name along with packaging information, sales information and other product-specific covariates.
In order to obtain a balanced dataset – which is required for the correct application of the Double Debiased
Machine Learning algorithm – we selected a subset of molecules that have been sold in many countries over
a sufficiently long period of time. The resulting dataset has a molecule-wise panel structure and covers 48
quarters for each molecule in each country in a comparable manner. The dataset provides quarterly sales
in USD and quarterly standard units in thousands for each product containing the selected molecules as ac-
tive ingredients. In this way, we can calculate the average ex-manufacturer prices for each product in each
country. Other variables in the database are the year of launch of the products, the number of products for
each molecule, the manufacturer, the number of companies dealing with each molecule as an indicator of
competition in the market, and the anatomical therapeutic class of the product. According to the anatomical

25https://www.iqvia.com
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therapeutic classification (ATC), drugs are categorized into different groups based on the organ or system
they act on and their chemical, therapeutic and pharmacological properties.

Our sample comprises 34 countries — including 10 MLICs and 24 HICs— and 33 molecules for the
period 2008-202026, summing up to 53,856 observations at the molecule-country-quarter level.The current
version of the DDML algorithm works better with balanced panel data and sufficiently long time series
(Semenova et al., 2021). Therefore, we created a sample with an even distribution of molecules to obtain
a balanced panel, resulting in a lower number of molecules and countries than available in the dataset.
Therefore, we focus our work on widely used products that have been available in many countries for a long
time.

The dependent variable for the estimation of the elasticities is the total demand for the molecule G, in
country c, in quarter j measured in log standard units. The treatment variable is the average log price of the
molecule G, in country c, in quarter j. We compute the price of a standard unit by taking the average of the
prices of drug based on molecule G weighted by the standard units sold in quarter j. The covariates are the
number of firms that produce a product inclusive of molecule G in the country c in quarter j, the percentage
of generic products among all the products inclusive of molecule G in the country c in quarter j, yearly log
GDP per capita based on purchasing power parity (PPP), Gini index, fixed effects for the quarter, country,
molecule and ATC at the first-level. In addition, previous realizations of the demand system in the form of
48 lagged variables of quarterly molecule prices and sales are included as covariates.

The number of firms controls the level of competition in the market. If there are relatively more firms
producing drugs inclusive of molecule G, some degree of price competition is expected, which may lead to
lower prices and vice versa. The percentage of generic products also controls for the level of competition,
but also for the degree of novelty of molecule G. Originator drugs are patented after their invention. Hence
firms cannot produce the same drug during its patent life, leading to a monopolistic market structure in which
originator drugs can be sold at pretty high prices. After the originator drug becomes off-patent, other firms
can produce the same drug (generators), and consequently, the price tends to decrease. The percentage of
generator drugs accounts for this process. GDP per capita controls the level of economic development. Gini
index is included in the model to account for income inequalities in countries. The literature on pharmaceu-
tical pricing underlines that prices might be lower in low-income countries. Moreover, some studies argue
that pharmaceutical firms tend to apply different prices for different income groups to benefit the income in-
equalities in low and middle-income countries. We thus control for GDP per capita and Gini index to partly
address these pricing strategies. GDP PPP and Gini index data are obtained from the World Development
Indicators database of the World Bank.

26Observations start in the third quarter of 2008 and end in the third quarter of 2020

25



Figure 1. Average Yearly Price of Pharmaceuticals by Country. Each cell represents the average price
of pharmaceutical products, measured in standard units, per country and year.

Figure 1 shows the average drug prices per standard unit over the years and markets.27 The price data are
measured in US dollars from 2008 to 2020, averaged across 33 molecules and weighted by standard units.
The US, China, Japan and Italy have the highest average drug prices, while India, Turkey and Russia have
the lowest average prices. The figure clearly shows that the average prices in some HICs are lower than the
prices in some MLICs. For example, the United Kingdom and the Netherlands have lower average prices
than Serbia and Romania.

27Values are missing in some countries because the range of molecules in these countries did not include a sufficient number of
products after the balanced dataset was created. This inadequacy prevented a reliable estimate of their average price.
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Figure 2. Normalised Price Trends of Molecules. Each subfigure displays the price trends of molecules
from their launch year in a given country.

Figure 2 shows the price shifts of the molecules over the next 5, 10 and 15 years from the year of launch
to give an indication of the price trends in the countries of the dataset. The year of launch is denoted by 0,
and the normalized starting price by 100. The year of launch is the year in which the first product of the
molecule G was sold on the national market of country c. The normalized initial price represents the average
price of the products of the molecule G in the country c in the year t. Figure 2 shows that the price of the
molecule tends to change linearly in most countries, i.e. it either rises or falls. This revealed pattern signals
the need to take price trends into account when calculating the price elasticities of demand. If this were not
the case, one could argue that the quantities of a molecule sold in a country tend to increase (decrease) as
prices naturally tend to decrease (increase). Thus, estimates of the price elasticity of demand based on the
price evolution of molecules in national markets turn out to be biased in absolute terms. We avoid these
concerns by accounting for price lags in the demand model. A detailed explanation of where and how price
lags are incorporated into the analysis is provided in the next section.
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4.2 Methodology
The methodological approach we follow in this paper – debiased/double machine learning (DDML) with
heterogeneous treatment effects in high-dimensional panels -— is based on Chernozhukov et al. (2018a) and
Semenova et al. (2021). Section 4.2.1 adapts the DDML method described in Appendix B to our scenario
and postulates the demand model we estimate. Section 4.2.2 briefly comments on how DDML deals with
potential endogeneity when estimating the demand model.

4.2.1 Double Machine Learning with Heterogeneous Treatments

The increasing availability of big data and sophisticated machine learning techniques has raised interest in
modelling consumer demand over the past decade (Bajari et al., 2015). Previously, estimating demand with
a large number of observations and covariates was challenging. Thanks to the recent advancements in ma-
chine learning methods, the ability to use a high-dimensional set of covariates decreases the probability of
standard omitted variable bias, which was an essential drawback of conventional demand estimates. The
double/debiased machine learning (DDML) framework of Chernozhukov et al. (2018a) builds on sample
splitting 28 and Neyman-orthogonality29, automates model selection to allow large number of controls and
interactions (classical DDML). In DDML, machine learning is not applied to estimate the treatment effect
directly, but to predict the plug-in parameters composing the Average Treatment Effect (ATE). Semenova
et al. (2021) extend this framework to a panel setting by allowing (i) high-dimensional and sparse treat-
ment effect parameters and (ii) unobserved unit effects (extended DDML). A further reason we reverted to
DDML is its ability to perform nonparametric estimation of the demand function without the typical binding
assumptions on its functional form found in the literature.

The description of the method in this section follows Semenova et al. (2021), with a summary of the
key elements of interest provided in Appendix B for reference. Below is reported a scenario in which
the price elasticity of demand is estimated by exploiting a partially linear panel model. The linear part
is the heterogeneous treatment effect that consists of the baseline treatment effect (BTE) and treatment
modification effect (TME). The nonlinear part is the effect of confounding factors on the outcome.

Consider a demand model of N heterogeneous products indexed by i ∈ {1,2, ...,N}, each associated
with a unique molecule g ∈ {1,2, ...,G} and observed across counties over time. We introduce a partition
Ξc such that Ξc : {1,2, . . . ,N} → {1,2, . . . ,G}, where Ξc(i) denotes all products within the same molecule
g and ATC-1 as product i in country c. For the sake of clarity we will define Ξc(−i) as being all products
within the same molecule g and ATC-1 as product i in country c except from product i. In this setup, cross-
price elasticity is assumed to be zero between products belonging to different molecules, i.e., the cross-price
elasticity is zero if Ξc(i) ̸= Ξc( j).

The log sales of product i in molecule g and county c at time t, denoted by Yigc,t , are modeled as follows:

Yigc,t = D′
igc,tθo +go(Xigc,t)+νi +µg +ηc +νi,g +νi,c +µg,c +Uigc,t ,

E[Uigc,t | (Pigc,t ,Xigc,t ,φigc,t) j∈Ξc(i)] = 0
(12)

where Digc,t =
[
Pigc,t(1,Kigc,t),PΞc(−i),t(1,Kigc,t)

]
is the treatment vector capturing the price of product i be-

longing to molecule g and country c as well as the average price of other products within the same molecule
and country of i (but different from i). Pigc,t represents the log price of product i in molecule g, country c,

and time t and PΞc(−i),t =
∑ j∈Ξc(i), j ̸=i Pjgc,t

|Ξc(i)|−1 denotes the average log price of all other products within the same

28Sample splitting, performed on the time dimension in our setting, ensures the absence of overfitting.
29Neyman-orthogonality implies the robustness of the treatment effect to approximation errors in the estimate of the treatment

propensity score and the conditional mean outcomes for treated and controls (Huber, 2021).
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cluster Ξc(i) as product i. Moreover, νi is a product-level fixed effect, µg are molecule and ATC-1 specific
fixed effects, ηc are country specific fixed effect. νi,g,νi,c,µg,c are pairwise interactions of the fixed effects
which we could include thanks to the reduced risk of multicollinearity given by regularization. Finally, Uigc,t
is a disturbance term satisfying the conditional sequential exogeneity condition.

The log price Pigc,t is modeled as:

Pigc,t = mo(Xigc,t)+ξ
P
igc +Vigc,t , E[Vigc,t | Xigc,t ,φigc,t ] = 0 (13)

where mo(Xigc,t) is a flexible function capturing the influence of control variables Xigc,t on price. Here, ξ P
igc

denotes an unobserved product-specific effect, and Vigc,t is an error term with the conditional mean-zero
assumption.

The vector Xigc,t includes control variables such as lagged sales Yigc,t−1, lagged prices Pigc,t−1, product
characteristics, and exogenous controls. The functions go(Xigc,t) and mo(Xigc,t) are unrestricted, allowing for
complex, nonlinear relationships known as nuisance parameters. The variable φigc,t = {(Xigc,s,Digc,s,Yigc,s)

t−1
s=1;ξ E

igc,ξ
P
igc}

denotes the historical information available up to time t, comprising both observed covariates and unob-
served unit effects ξ E

igc and ξ P
igc.

In this framework, Digc,t represents the interaction of the product’s own price Pigc,t and the molecule-
level average price PΞc(−i),t with observable characteristics Kigc,t , a subset of Xigc,t . The causal interpretation
of θ0, the vector of treatment effect parameters, is facilitated by the sequential exogeneity assumption for
Uigc,t in Equation (12) which follows from Semenova et al. (2021)’s work.

The main equation of interest is (12). The parameter of interest is θo
30 —the vector of heterogeneous

treatment effects— that we interpret as the price elasticity of demand. In other words, θo is identified as the
causal effect of price on demand under the assumption that Uigc,t is mean independent of the information set
φit (Semenova et al., 2021). In particular, for the identification of θo we assume that –after controlling for
all pre-determined variables–Uigc,t is mean independent of all information (Pigc,t ,Xigc,t ,φigc,t) j∈Ξc(i) about
members of the ith cluster in country c31 Then,

θo = (θ own
o ,θ cross

o ) (14)

where θ own
o represents the vector of own-price elasticities, and θ cross

o represents the vector of cross-price
elasticities.32 For clarity with respect to Section 3.3, note that our demand is estimated in log–log form.
Hence the parameter vector θo identifies the structural elasticity map: baseline coefficients and interactions
that map observed characteristics Kigct into observation-specific elasticities. In particular, θ own

o maps Kigct
to the own-price elasticity and θ cross

o maps Kigct to the cross-price elasticities. The realized (observation-
specific) elasticities are therefore

epii = (1,Kigct)
′
θ

own
o , ep ji = (1,Kigct)

′
θ

cross
o ( j→ i),

which coincide with the derivatives ∂ logQigct/∂ logPigct and ∂ logQigct/∂ logPjgct , respectively. These ob-
jects are unit-free elasticities and are the quantities that enter the Ramsey conditions in Section 3.3.

30θo plays the same role as β0 in the Appendix B
31Notice also that an implicit assumption is that, once we controlled for fixed effects, no residual time-varying unobserved hetero-

geneity across countries occurs. Namely E[Uigc,t ,Uigc′,t′ ] = 0 for c ̸= c′ and t ̸= t ′. However, since Semenova et al. (2021)’s context
allows for heteroskedasticity, we can release the latter assumption.

32The target parameter θo is Neyman orthogonal with respect to the nuisance parameters, which is why the DDML framework is
applicable for estimation and inference on θo. In this context, θo has dimension 2p+2, comprising both the own-price and cross-price
elasticities, with baseline terms and interactions for each of the p product characteristics. This result assumes that each component of
θ own

o and θ cross
o includes a scalar baseline elasticity and p coefficients corresponding to observable product characteristics Kigc,t .
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Demand is affected by changes in own price (∆Pigc,t) as indicated in Equation (15), and by changes in
the average cluster price (∆PΞc(−i),t) as shown in Equation (16).

∆D′
igc,tθo = ∆Pigc,t(1,Kigc,t)

′
θ

own
o = α

own
0,1 +K′

igc,tγ
own
0,−1 (15)

∆D′
igc,tθo = ∆PΞc(−i),t(1,Kigc,t)

′
θ

cross
o = α

cross
0,1 +K′

igc,tγ
cross
0,−1 (16)

where αown
0,1 and αcross

0,1 denote the Baseline Treatment Effect (BTE), while K′
igc,tγ

own
0,−1 and K′

igc,tγ
cross
0,−1 represent

the Treatment Modification Effect (TME). Equations (15) and (16) illustrate that the causal effect of a unit
change in the base treatment Pigc,t on the outcome Yigc,t is the sum of the BTE and the TME (Semenova
et al., 2021). The treatment vector is highly sparse as it includes interactions between product-specific and
cluster-average prices and product characteristics. Specifically, dim(Digc,t) = dim(θo) ≫ NT but only a
small subset s ≪ NT has non-zero effects, so that ∥θo∥0 = s. Furthermore, the sub-Gaussianity condition
holds. Namely, residuals Vigc,t

33 and Uigc,t exhibit sub-Gaussian tails conditional on covariates Xigc,t , so

that P(|Vigc,t | ≥ ε | Xigc,t) ≤ 2exp
(
− ε2

2σ2

)
and P(|Uigc,t | ≥ ε | Xigc,t ,φigc,t) ≤ 2exp

(
− ε2

2σ2

)
for some finite

constant σ2. This imposes that Vigc,t and Uigc,t have light tails, reducing the likelihood of extreme values,
which is essential for ensuring the consistency of the estimators used in Semenova et al. (2021). Notice that
the sub-Gaussian tails assumption is reasonable in contexts with aggregated data like sales or prices, where
extreme values are less common due to averaging effects. As we will see later in our context, product sales
are aggregated at the molecule level as well as prices.

Given these assumptions and premises, the algorithm of Semenova et al. (2021) described in Appendix
B is applicable and ensures identification of the coefficient of interest θo.

In our setting, with 48 quarters and 33 molecules, we estimate a partially linear, sequentially exogenous
dynamic panel model for the quarterly demand for pharmaceuticals. We conduct the analysis at the molecule-
country level because product names vary by country, making it impossible to identify specific products
consistently across countries. Additionally, the panel of products is unbalanced, as some products are only
available in certain countries. This approach is also necessary for privacy reasons. The base treatment,
therefore, becomes:

Pgc,t =
48

∑
l=1

Pgc,t−lα
P
l + M̄′

gγ0 +ρ
P
q +aP

gc +Vg,t (17)

where Pgc,t represents the log price of molecule g in country c at time t, where time is represented by
quarters. Notice that –as a consequence of the shift of dimensionality from product level to molecule level–
Ξ is a mapping such that Ξ : {1,2, . . . ,G} → P({1,2, . . . ,C}), where P({1,2, . . . ,C}) denotes the power
set of countries. In this context, Ξ(g) denotes all molecules within the same country and similarly from the

more general form above, PΞ(−g),t =
∑k∈Ξ(g),k ̸=g Pkc,t

|Ξ(g)|−1 . In other words, PΞ(−g),t consists of the average price of

all the other molecules in the same country of molecule g34. The term ∑
48
l=1 Pgc,t−lα

P
l captures the lagged

effect of prices over the past 48 quarters. M̄′
gγ0 represents molecule g-specific characteristics. The term

ρP
q where q = tmod4 indicating each quarter in every year. The latter denotes quarterly fixed effects to

capture seasonality, while aP
ig is an unobserved effect specific to the molecule, and country. Lastly, Vgc,t is a

stochastic error term, assumed to satisfy sequential exogeneity.
33Vigc,t =

[
Pigc,t(1,Kigc,t),PΞc(−i),t(1,Kigc,t)

]
− di0(Xigc,t) where di0(Xigc,t) represents the fitted value of the treatment vector Digc,t

based on the covariates Xigc,t . This residual Vigc,t captures the component of Digc,t that is not explained by Xigc,t .
34A similar model where Pgc,t represents the log price of molecule g in country c at time t comprising product i and PΞ(−g),t is the

average price of molecule g excluding product i can be easily constructed.
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Accordingly, we build a dynamic panel model for the outcome variable (log sales) as follows:

Sgc,t = D′
gc,tθo +go(Xgc,t)+νg +ηc +µg,c +Ugc,t

E[Ugc,t | (Pkc,t ,Xkc,t ,φkc,t) j∈Ξ(g)] = 0,

Dgc,t =
[
Pgc,t(1,Kgc,t),PΞ(−g),t (1,Kgc,t)

]
,

θo = (θ own
o ,θ cross

o )

(18)

where Kgc,t is a vector of (heterogeneity relevant) observable covariates for molecule g in country c at time t,
including variables such as market characteristics and average product features 35. The variables νg +ηc +
µg,c are defined similarly to those in equation (12). the parameter of interest is the average heterogeneous
effect, which encompasses the (overall) price elasticity of demand:

εgc,t = (1,Kgc,t)
′
θ0 (19)

Given the plausibility of the sub-gaussianity assumption –favored by the higher order aggregation at the
molecule-country level–and of the sparsity assumption –given the large number of covariates at the molecule-
country level in time– we employed the Double/Debiased Machine Learning (DDML) framework with het-
erogeneous treatment effects to estimate the demand model specified above. Given the above assumptions,
the model is guaranteed to correctly identify εgc,t (Semenova et al., 2021).

As discussed in Appendix B, the estimation strategy is implemented in two stages. In the first stage,
we define the reduced forms of equations (17) and (18). Equation (20) displays the unit-specific treatment
reduced form of equation (17), namely:

p̂g0(Xgc,t) =
48

∑
l=1

Pgc,t−lα̂
P
l + M̄′

gγ̂0 + ρ̂
P
q + âP

gc (20)

where Xgc,t = (Mgc,t ,M̄g,Pgc,t−1, . . . ,Pgc,t−48) is a vector of pre-determined control variables and fixed ef-
fects. ∑

48
l=1 Pgc,t−lα̂

P
l represents the influence of 48 quarters of lagged prices on the current price, with α̂P

l
as the estimated coefficients. The term M̄′

gγ̂0 captures molecule-specific characteristics, ρ̂P
q denotes quar-

terly fixed effects to account for seasonality, and âP
gc represents unobserved unit-specific effects for each

molecule-country combination.
Similarly, the reduced form prediction for the outcome variable, l̂g0(Xgc,t), is derived from the sales

model as follows:

l̂g0(Xgc,t) = p̂g0(Xgc,t) · (1,Kgc,t)
′
θ̂o +go(Xgc,t)+ ν̂g + η̂c + µ̂g,c (21)

where p̂g0(Xgc,t) represents the predicted treatment values from equation (20).
Following Semenova et al. (2021), equations (20) and (21) are estimated using Lasso36, obtaining the resid-
uals for the treatment (equation (22)) and the outcome (equation (23)) as follows:

P̃gc,t = Pgc,t − p̂g0(Xgc,t) (22)

35To ensure dimensional consistency in compact form, note that Dgc,t =
[
Pgc,t(1,Kgc,t),PΞ(−g),t(1,Kgc,t)

]
is structured as a 2(p+

1)×1 vector, where p is the dimension of the covariate vector Kgc,t = (1,Kgc,t,1,Kgc,t,2, . . .Kgc,t,p). Consequently, θo = (θ own
o ,θ cross

o )
must also be 2(p+1)×1, comprising two components: θ own

o and θ cross
o , each with dimension (p+1)×1. This structure allows D′

gc,t θo
to represent the own- and cross-price effects in a dimensionally consistent manner.

36Belloni and Chernozhukov (2013) suggest that using Lasso at the first stage enhances the fit of the model in the second stage.
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S̃gc,t = Sgc,t − l̂g0(Xgc,t) (23)

In the second stage, we regress S̃gc,t on P̃gc,t to capture the remaining causal relationship between the two.
Furthermore, to ensure robustness in estimation and inference, particularly given the allowance for

heteroskedasticity, we cluster standard errors at the molecule-country level to properly account for cross-
sectional dependencies and any remaining within-cluster correlation over time. Specifically, given the lon-
gitudinal nature of our dataset, where the same molecules are observed over time in specific countries,
clustering standard errors at the molecule-country level is essential to account for within-cluster correlations
due to repeated observations (Abadie et al., 2023). This approach addresses the potential for correlated
shocks within each molecule-country pair, as demand shocks or other unobserved factors may persist across
quarters. By clustering at this level, we align with recommended practices that suggest clustering based
on the structure of the data’s assignment or sampling mechanism, rather than solely on the error structure.
Specifically, with respect to Appendix B we employ a clustered variance-covariance matrix of residuals:

Q̂cluster-robust =
1

NT

C

∑
c=1

(
∑
g∈c

T

∑
t=1

V̂gtV̂ ′
gt û

2
gt

)
,

where clustering adjustments ensure robustness to both heteroskedasticity and within-cluster dependence.
This matrix is then inverted and symmetrized to obtain Ω̂cluster-robust, CLIME, used to construct the debiased
Lasso estimator 37, allowing for reliable inference on heterogeneous treatment effects 38

The covariates (Xgc,t ) in both stages include the number of firms producing a product containing a
molecule g in country c at time t, the percentage of generic products among all products containing molecule
g in country c at time t, yearly log GDP per capita based on purchasing power parity, Gini index, as well
as fixed effects for quarter, country, molecule, and ATC level. Additionally, the model includes previous
realizations of log price and log standard units (48 lags for 48 quarters) to account for the effects of price
and sales history. The average non-self unit price accounts for the prices of substitutes and complements.

Based on the methodology and demand model above, we estimate the price responsiveness of pharma-
ceutical demand at the country-molecule level. We perform three different second-stage estimations, using
OLS39, cross-validated Lasso, and Debiased Lasso, as appropriate. Furthermore, we estimate the demand
model separately for generic pharmaceuticals to account for product heterogeneity, which may contribute to
variations in price elasticities.

4.2.2 Endogeneity and DDML

Endogeneity is an essential problem for demand estimates. Notably, two sources of endogeneity —omitted
variable bias and simultaneity— are of major concern. As already mentioned, DDML allows for a large num-
ber of covariates, including product fixed effects, lags of prices and sales. In a standard regression model,
using a large set of covariates is an actual problem leading to poor parameter estimates and multicollinearity
(Bajari et al. (2015)). Accordingly, variable selection becomes an integral part of the estimation strategy.
DDML automates variable selection in the sense that large numbers of covariates included in the model are

37See Ω̂CLIME in Appendix B
38As a robustness-check we also adopt the Relevant One-step Selective Inference for the Lasso (ROSI) approach by Taylor and

Tibshirani (2018) and Liu et al. (2018) to obtain the p-values. ROSI enables post-selection inference for Lasso and provides an updated
method to recover standard errors based on the "relevant conditioning event" (Liu et al., 2018), in comparison to the Huber-White
criterion. Results are available upon request.

39That is inference on CATE was done by using a FE estimator.
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regularised, i.e. covariates with zero coefficients are removed from the model. This process decreases the
possibility of standard omitted variable bias.

Another major source of endogeneity, simultaneity, occurs if producers and consumers know the un-
observed unit characteristics —such as product quality, fewer side-effects, and higher effectiveness— and
producers set prices based on them. In this case, unobserved unit characteristics are correlated with prices
and quantities (Berry et al., 1995). A simultaneity problem might lead to upward-biased elasticity estimates
if unobserved characteristics are not accounted for. Introducing unobserved unit effects in the extended
DDML algorithm alleviates the overfitting problem since they account for molecule-country-quarter spe-
cific characteristics that are difficult to quantify. They also capture quantifiable molecule-country-quarter
characteristics not present in the data set we use. Notice that unobserved unit effects are unit-specific distur-
bances estimated with unit-specific expectation functions (see Section 4.2.1). Afterwards, their effects have
been removed from sales and prices during the orthogonalisation step. Consequently, unobserved character-
istics of pharmaceutical products cannot be correlated with prices and sales in the second stage of estimation.
In other words, the orthogonalisation step of DDML removes the potential endogeneity.

In what follows, we instrumented quarterly pharmaceutical prices with the average pharmaceutical prices
in other countries. More precisely, the instrument for the price of a drug inclusive of molecule G in country
c at time t (the baseline treatment), is the average price of drugs inclusive of the same molecule G in other
countries at time t. We also re-estimate the demand model postulated above without the instrument40. The
results are pretty similar to the main findings, indicating the absence of a strong endogeneity bias.

Since the instrumental variable approach is the one carried on throughout the analysis, we formalize
it below following Chernozhukov et al. (2018b) and Syrgkanis et al. (2021). Following Semenova et al.
(2021), we estimate a partially linear dynamically exogenous panel model for pharmaceuticals demand,
incorporating sieve-based IV for robust estimation. Our sieve-based IV estimator extends the two-stage
least squares (2SLS) methodology by employing a sieve basis for the treatment, covariates, and outcome
variables. Formally, we acknowledge the potential endogeneity of the baseline treatment Pgc,t .

To simplify the notation we will denote as i molecule g in country c, so that for instance, the logarithm
of price for molecule g in country c at time t, Pgc,t becomes simply pit . Similarly the logarithm of sales for
molecule g in country c at time t, Sgc,t becomes sit . Moreover, for the sake of clarity in the notation, we
will focus for the rest of the section on the within-molecule equation and without fixed effects, though the
method can be generalized to our scenario (see Chernozhukov et al. (2018b)).
Specifically, the reduced compact form of Eq.(18) and Eq.(17) are respectively

st = ϒ0(L, t)pt +ϒU (L)Ut

pt = ϒ1(L)Vt
(24)

where ϒ0(L, t) :=(I−αS(L))(−1)[b0I+bKD(Kt)+αP(L)], ϒU (L) :=(I−αS(L))(−1), ϒ1(L) :=(I−Φ(L))(−1).
Namely, αS(L) and αP(L) are the degree-48 lag polynomials from the sales equation, Φ(L) is the degree-
48 lag polynomial from the price equation pt = Φ(L)pt +Vt , D(Kt) is the diagonal matrix with Kt on the
diagonal. αS(L),αP(L),Phi(L) are degree-48 strict-lag polynomials (no L0 term); b0,bD

K
(
Kt
)

capture con-
temporaneous price effects. The interested reader is referred to Appendix C. The compact form serves to
ensure that we can write pt and st consistently from now on.

Let’s now introduce the sieve method as follows:
40The detailed results are available in Buyukyazici (2022). The identification guarantees are provided in Section 4.2.1 and in Ap-

pendix B.
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st =
dpt

∑
d=1

dXt

∑
k=1

Π
′st
0,d,k ψd(pt)ρk(Xt) + γ(Xt ,Wt) + εt (25)

pt =
dp

∑
d=1

dXt

∑
k=1

Π
pt
1,d,k φd(p−c,t)ρk(Xt) + δ (Xt ,Wt) + νt (26)

The analytical framework incorporates a selection of basis functions for modelling the variables in ques-
tion. Similarly to Chernozhukov et al. (2018b), we define {ψd} as basis functions in the treatment dimension
(price), i.e., they act on pt and are indexed by degree dpt . Concurrently, {φd} are basis functions applied
to the instrument p−c,t , with degree dp. The covariates Xt are represented through basis functions {ρk},
each bearing a polynomial degree dXt . Xt includes the 48 lags of prices and sales, fixed effects, and market
covariates. This means we rely on sequential exogeneity of the lags and instrument only contemporaneous
pt .

Within this context, p−c,t is the instrumental variable, defined as the average price of drugs with the same
molecule G in other countries at time t. The pair (Xt ,Wt) denotes the covariates (allowing for correlated error
structures). Each function ψd maps pt to R; the ρk map Xt to R; and the φd map p−c,t to R. The terms εt and
νt are equation errors.

Notice that, since we adopt a linear first stage for 2SLS, in Eq. (26) we set dp = 1. In the second stage,
instead, we remain flexible to avoid misspecification, hence dpt >1 in general, and Π′

0 need not equal Π0.
In particular, in our empirical implementation we use a linear basis in the first stage. Rather than using

pt directly in estimation, we employ its fitted values from a linear projection on the instrument and controls:

p̂t = π1 p−c,t + δ (Xt ,Wt) + ωt , (27)

where p̂t denotes the fitted value of pt and ωt is the first-stage residual. The second stage then estimates
st using the sieve in ψd(·), with pt orthogonalized via p̂t . More formally, following Chernozhukov et al.
(2018b), our target is

θ0(pt,0, pt,1,xt) =
dpt

∑
d=1

dXt

∑
k=1

Π
′st
0,d,k ρk(xt)

(
ψd(pt,1)−ψd(pt,0)

)
. (28)

Operationally, we first estimate the conditional expectations E[ψd(pt) | Xt , p−c,t ,Wt ] by (linear) projection
of ψd(pt,i) on the feature set {φd(p−c,it)ρk(xit)} and (xit ,wit) (see Eq. (27)). We then project sit on the
estimated functions and (xit ,wit) to obtain Π̂

′st
0,d,k, from which we construct θ0.

Identification To ensure identification of the CATE coefficients, we employ a sieve approximation to
flexibly model treatment–outcome relationships. The Neyman-orthogonal score used in the second stage
yields robustness to first-stage estimation error; endogeneity is addressed by the IV conditions. In particular,
let the structural function g(X ,T ) represent the relationship between sales y= st , covariates Xt , and treatment
T = pt . We write st = g(Xt ,Wt , pt) and—for identification—omit Wt henceforth.

Following Newey and Powell (2003), identification of g(Xt , pt) is based on the Fredholm integral equa-
tion

E[st | p−c,t ,Xt ] =
∫

g(Xt , p) dF
(

p | p−c,t ,Xt
)
,
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where F(· | ·) is the conditional distribution of pt given the instrument and covariates (Wu et al., 2022)41.
In our sieve specification,

g(Xt , pt) =
dpt

∑
d=1

dXt

∑
k=1

Π
′st
0,d,k ρk(Xt)ψd(pt),

so that

E[st | p−c,t ,Xt ] =
∫ ( dpt

∑
d=1

dXt

∑
k=1

Π
′st
0,d,k ρk(Xt)ψd(p)

)
dF
(

p | p−c,t ,Xt
)
.

As the number of sieve basis functions increases, the approximation error vanishes under standard smooth-
ness and richness conditions on g and the bases.

The kernel in this integral equation is the conditional law F(p | p−c,t ,Xt). For solvability and correct
identification of g(Xt , pt), we impose:

Assumption 1 (Continuity). For almost every (p−c,t ,Xt), the conditional law of Pt is continuous in p;
equivalently, if a density f (p | p−c,t ,Xt) exists, it is continuous on a compact support P .

Assumption 2 (Support/Monotonicity). For almost every (p−c,t ,Xt), the conditional distribution F(· |
p−c,t ,Xt) is strictly increasing on P (no point masses), and its density—when it exists—is bounded above
and away from zero on P .

Assumption 3 (Exogeneity, Relevance, and Completeness). (i) Exogeneity/Exclusion: E[εt | p−c,t ,Xt ] =
0. (ii) Relevance: Var(E[Pt | p−c,t ,Xt ])> 0. (iii) Completeness (injectivity): for any square-integrable h,

E
[
h(Pt) | p−c,t ,Xt

]
= 0 a.s. ⇒ h(Pt) = 0 a.s.

Given these conditions, E[st | p−c,t ,Xt ] and F(pt | p−c,t ,Xt) can be consistently estimated from the data,
and the integral equation inverted (numerically) to recover g(Xt , pt). Consequently, the CATE coefficients
θ0(pt,0, pt,1,xt) are identified via the two-stage sieve-based IV procedure above.

4.3 Results
4.3.1 Overall Results

Figure 3 shows the overall results estimated with Debiased Lasso42. Given that we only estimate own-price
elasticities at this step, the dimension of treatment is relatively low, hence Lasso, Debiased Lasso, and OLS
produce very similar results (see Figure F.1). Figure 3(a) displays the own-price elasticities of pharma-
ceuticals by country, averaged on molecules and the period 2008-2020. Figure 3(b) exhibits the own-price
elasticities by molecules, averaged on countries and the period 2008-2020. For the sake of completeness,
we have also included the within-country results as displayed in Appendix D.

The results show that all countries have average price elasticities less than zero, except for the USA
(0.25), ranging from the highest (−1.42) for Colombia to the lowest (−0.43) for Chile, while molecules

41The function g(Xt , pt) maps prices and covariates to expected sales. The CATE θ0(pt,0, pt,1,xt) = g(xt , pt,1)− g(xt , pt,0) is the
conditional effect of moving price from pt,0 to pt,1.

42Notice that in the case of Lasso a check on sparsity has been performed ensuring that the number of non-zero coefficients (≈ 200)
is strictly lower than

√
N (≈ 230) in order to adopt plug-in λ s and avoid first order impacts of the first stage estimation on θ0.
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have a higher variation from the highest (−2.04) to the lowest (-0.21). Interestingly, the most price-elastic
molecules are those traditionally adopted as painkillers, i.e. analgesics. The average price elasticity of
painkillers is -1.8, in line with previous estimates (Björnerstedt and Verboven, 2012; Chevalier et al., 2003).
The least elastic molecules are those curing mainly chronic diseases. A possible reason is that drugs like
analgesics – and painkillers in general – are likely to be adopted for shorter amounts of time and have more
substitutes in the market, hence being more prone to price variations. Instead, medicines curing chronic
diseases are employed by patients for a longer amount of time and have a lower degree of substitutability,
thus being less sensitive to price variations.

((a)) ((b))

Figure 3. Price Elasticities by Country and Molecule.

While the literature agrees on the fact that molecules employed for the treatment of chronic diseases
should have a low elasticity (Hernández-Izquierdo et al., 2019), there is no solid consensus on the behaviour
of the analgesics’ price elasticity. On the one hand, Gatwood et al. (2014) find the NAIDs and opioids
(among which Diclofenac) to be only moderately responsive to price. On the other hand, Soni (2019) detects
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a significant and high elasticity for prescribed opioids. Halme et al. (2009) elaborate a natural experiment to
assess patients’ preferences between over-the-counter generics and branded products adopting Ibuprofen. In
this study, they find that half of the respondents are strongly price sensitive, while the other half rely on the
opinion of the physician. Chevalier et al. (2003) estimate the price elasticity of painkillers as -1.9. Finally,
Björnerstedt and Verboven (2012) report the price elasticity of analgesics as -2.7. Overall, the literature
seems to be more inclined to accept the high price responsiveness of painkillers. A possible explanation
for the diversity in the results of the different studies might be found in Harris (2022) which indicates the
geographical heterogeneity as the root cause for such diversity.

Figure 4. Price Elasticities by Molecule-Country Pairs. Each cell represents the unit-specific own-price
elasticity estimate averaged on the period 2008-2020. Each estimate is significant at the 95% confidence
interval. Insignificant unit estimates are left blank.

Figure 4 indicates how price elasticities vary by country-molecule pairs. Some molecules have signifi-
cantly elastic demand —i.e. Diclofenac, Paracetamol— across all countries, represented by lighter-coloured
columns; while others have relatively inelastic demand —i.e. Loratadine, Mesalazine— represented by
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darker-coloured columns. Interestingly, several molecule-country pairs have positive elasticities, which
could be a signal of the Giffen Paradox in pharmaceuticals (see Yeung et al. (2018)). Nevertheless, al-
most all molecules show some degree of variation across countries. For instance, the own-price elasticity of
Dexamethasone is 0.26 in the USA, while it is −1.38 in Poland. Similarly, each country exhibits varying
elasticities across molecules despite some have a more elastic average, such as Colombia, India and Poland,
represented by lighter-coloured rows. In contrast, China, Japan, and the USA have a rather inelastic average
with substantial within-variation.

Differences between Figures 3 and 4 underline the importance of high-granular level estimates. Figure
3 reports the highest (lowest) elasticity estimate to be −1.42 (−0.42) for countries and −2.04 (−0.21) for
molecules. Figure 4 shows that elasticities can be more elastic (−2.53) than average levels, even positive
(0.97).

Our results support the criticism of Yeung et al. (2018) who argue that the demand elasticities of phar-
maceuticals are biased to be inelastic, i.e. close to zero, when prices of substitutes and complements are
not taken into account, which was the case in previous elasticity estimates as mentioned in Section 2. The
methodology and demand model we use allow us to incorporate non-self prices (equation 4) into the esti-
mates; thus, we can rule out the cross-price effects and approximate true own-price elasticities. Correspond-
ingly, our estimates are more elastic than the previous studies that range from −0.12 to −0.6, even though
they cannot be easily compared to our case in terms of data type, model selection, and aggregation level as
discussed above.

4.3.2 Ramsey Pricing? Price and Price Elasticity Relation

Ramsey pricing is built on the inverse elasticity rule, which states that prices should vary inversely with
the price elasticity of demand. Accordingly, the existence of Ramsey prices can be tested by looking at the
relationship between prices and the price elasticities of demand. As an example, consider two markets, m1
and m2, with different prices and price elasticities. Let the average price be 25$, and elasticity be −0.8 in
m1. Suppose now that the price is 22$ and the elasticity is −1.3 in m2. If Ramsey pricing exists in these
two markets, the price should be higher in the market with the lower elasticity of demand price, - smaller in
magnitude, indicating a lower price response - , i.e. m1. Indeed, m1 has a lower price elasticity and higher
price than m2, meaning that the inverse elasticity rule holds and Ramsey pricing exists in these markets.

Motivated by this reasoning, we analyse the relationship between pharmaceutical prices and the price
elasticities of pharmaceutical demand to test whether the inverse elasticity rule holds in national (see Ap-
pendix D) and international pharmaceutical markets. Figure 5(a) exhibits the predictions for price elasticity
from a linear regression of price elasticity on average prices in logarithms. The resulting line of the price-own
elasticity relationship has a strong positive slope, indicating a negative association between price elasticity
and price at the country level. Specifically, countries where pharmaceutical prices are typically lower tend
to be more sensitive to price changes compared to countries with higher average prices of drugs. Appendix
E deepens the analysis, considering HICs and MLICs separately. The negative relation between price elas-
ticity and price persists despite an increase in the degree of slope for HIC (Figure E.3) and a decrease for
MLICs (Figure E.4), meaning that the inverse elasticity rule is stronger in HICs43. These results validate
that the inverse elasticity rule holds, thus supporting the hypothesis that differential pricing based on Ramsey
principles exists in cross-national pharmaceutical markets.

43This result might be driven by the fact that our sample comprises more HICs than MLICs. It is likely that the distance between
the poorest and the richest country among the HICs is much higher than the same distance in the MLICs sample since the division has
been operated based on the OECD classification.
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((a)) ((b))

Figure 5. Relationship Between weighted price and (a) Price elasticity (b) Income as measured by
GDP Per Capita (PPP). The own-price elasticity of pharmaceuticals is averaged on 33 molecules and the
period 2008-2020, for each country. The x-axis of (a) displays the log price of pharmaceuticals, averaged
on molecules and years, weighted by standard units. The x-axis of (b) displays the standardized GDP per
capita averaged for the period 2008-2020.

Taken together, Figure 5(a) confirms the inverse–elasticity relation (higher prices where demand is less
elastic), while Figure 5(b) shows a positive price–income correlation. These facts are not contradictory:
if, on average, |ε| declines with income and other fundamentals co-move with income, Ramsey’s mapping
(P−MC)/P = 1/|ε| implies that prices can rise with income even as they rise with inelasticity. Hence,
income is an imperfect proxy for |ε|, and direct tests of P ∝ 1/|ε| are more informative than price–income
regressions alone (Danzon, Towse, and Mestre-Ferrandiz, 2015b).
In particular, cross-country differential pricing based on Ramsey principles can only be implemented if
the price elasticities of demand exhibit some degree of variation across countries44. One major reason for
elasticities to vary is cross-country income inequality. The marginal utility of money is plausibly higher in
MLIC, implying greater price sensitivity (larger |ε|) than in HIC. Under traditional Ramsey/Lerner (but as
we have seen similarly in more complex versions of it), markups satisfy (P−MC)/P= 1/|ε|. Prior empirical
work therefore often expects—and sometimes finds—a positive price–income slope when richer markets are
less elastic (e.g. Maskus, 2001; Sherer and Watal, 2002; Lichtenberg, 2011), with the mechanism that |ε|
tends to decline with income (Danzon, Mulcahy, et al., 2015). In our data, Figure 5(a) exhibits the inverse-
elasticity relation: the fitted line is positive because the ordinate is ε (typically negative); equivalently, the
slope is negative in |ε|. However, Figure 5(b) presents the relationship between pharmaceutical prices and
GDP per capita (PPP) as being positively related. Contrary to the longstanding assumption of the literature,
the inverse elasticity rule holds even though prices do not inversely vary with income. Hence, the comparison
of Figures 5(a) and 5(b) is important as the literature has traditionally employed GDP per capita as a proxy for
price elasticities due to the lack of consistent estimates of the latter (Danzon, Towse, and Mestre-Ferrandiz,
2015b).

44Prices, for instance, will vary with each country’s per-capita income (wealthier countries may have higher ICER thresholds and
thus higher drug prices), consistent with Ramsey optimal pricing.
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A further explanation for differences in the application of Ramsey pricing across countries can be due
to unobserved price distortions caused by different insurance regimes in different countries (Barros and
Martinez-Giralt, 2008). A potential limitation is that, although we controlled for country fixed effects, we
did not include cross-country fixed effects in order to preserve degrees of freedom for efficient estimation.
This may have left some unobserved heterogeneity unaccounted for in the model.

We further analyse this pattern by looking at the relationship between own-price elasticities and income,
which has not been empirically tested so far. Figure 6 provides limited evidence of the inverse relation
between the price elasticities of pharmaceuticals and GDP per capita income as indicated by the slightly
positive fitted line, which is further affirmed by E.1 and E.2.

Overall, the results presented in this study suggest that assessing Ramsey pricing by looking at the
relationship between pharmaceutical prices and income, as in prior studies, is very likely to be misleading,
as we show that the inverse relation of prices-price elasticities and price elasticities-income exists despite
the positive relation between prices and income. This evidence is in line with the findings in the Theory part
where we show that in MLICs, pharmaceutical companies focus mostly their attention on the rich share of
the population, which on average is less price sensitive than the middle and lower classes.

It is worth mentioning here some interesting results emerging from Appendix E where we observe that
when GDP decreases in low-income countries, drug prices either remain stable or increase despite Ram-
sey pricing and a corresponding rise in price sensitivity. This counterintuitive lack of correlation between
heightened price sensitivity and drug prices is particularly intriguing for several reasons. First, the mecha-
nism may be partially explained by the presence of insurance, which mitigates individual price sensitivity.
However, this effect is primarily evident in HICs, as suggested by Danzon, Towse, and Mestre-Ferrandiz
(2015b). Second, the observation supports the hypothesis that, in MLICs, pharmaceutical companies tend
to target wealthier, less price-sensitive segments of the population. This raises a compelling question: why
are wealthier individuals in low-income countries less price-sensitive? Possible explanations include higher
education levels, which make them more health-conscious and likely to insure themselves, significant in-
come disparities that allow the wealthy to remain indifferent to drug price changes, or a wealth effect, where
greater financial resources inherently reduce price sensitivity, as discussed in Section 3 in a more formal
way.
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Figure 6. Relationship Between GDP per capita PPP and price elasticity. Y-axis displays the own-price
elasticity of pharmaceuticals averaged on 33 molecules and period 2008-2020, for each country. X-axis
displays the standardised GDP per capita PPP averaged on the period 2008-2020.

4.3.3 Heterogeneity in Treatment Effect: Generic Pharmaceuticals

Danzon, Mulcahy, et al. (2015) argue that generic markets are more competitive than originator markets
because originators’ price has to cover the fixed cost resulting from pharmaceutical R&D alongside the
marginal cost. Moreover, originators might have patent protection that prevents new entries into the market
and allows firms to price discriminate across and within countries. On the contrary, generics’ prices gener-
ally reflect the marginal production costs that tend to be uniform across countries. These aspects are likely
to introduce different patterns of price elasticities for generic products. Therefore, we replicate the previous
analysis only for generic pharmaceutical products.
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Figure 7. Price Elasticities by Molecule-Country Pairs (generics).Each cell represents the unit-specific
own-price elasticity estimate averaged on the period 2008-2020. Each estimate is significant at the 95%
confidence interval.

As before, we begin the analysis with an overview of the elasticities for molecule-country pairs. Figure 7
presents the unit-specific own-price elasticity estimate averaged on the period 2008-2020 in a range of -5.61
to 1.01. The majority of the elasticities (97%) are negative as expected.

Figure 8 displays the results with substantial differences across countries and molecules. Figure 8(a)
shows that the average price elasticities for generic products exhibit substantial dissimilarities45 between the
most (Czech Republic, Netherlands, and Slovenia) and least price-elastic (Italy, Egypt, and France) coun-
tries. The most price-elastic countries are expected to have either a higher share of generics —probably
because of favouring the generic entrance into the market through their legislation, i.e. Poland (Wouters
et al., 2017) and Slovenia— or particularly low generic prices which increase the access of a higher share
of the low-income population as in Spain and Netherlands (Wouters et al., 2017). The case of the Czech
Republic is self-standing. The Czech Republic has a moderate share of generics, which would not explain
its first position in the ranking. One potential explanation is the Czech Republic government’s policy to ease
the generic entrance into the market by formulating ad hoc legislation to favour generics, thereby reducing
the drug prices since the generic industry has a big potential for low-cost drugs due to the simultaneous ex-
piration of patents (Lőrinczy, 2013). This policy has intensified after the financial crisis of 2011, supporting
our estimate.

45Also detected with an insignificant Kendall τ of ranking similarity.
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Figure 8. Price Elasticities by Country and Molecule for Generic Pharmaceuticals

On the other hand, the most price-inelastic countries are expected to have a low share of generics and/or
similar prices between generic and originator drugs. For instance, in Italy, the proportion of prescriptions
filled with generics amounts to 19% (Wouters et al., 2017) and the price of generics is above the EU average.
Similarly, in France, the price of generics amounts to two-thirds of the price of the originator counterpart
(Wouters et al., 2017). Regarding Egypt, the market of generics is not developed mainly due to the lack
of education of physicians or pharmacists who, often, do not know the generic counterpart of a branded
medicine (Elhiny et al., 2021).

Figure 8(b) presents the molecule-wise average price elasticities of generic products. The ranking pre-
serves the general trend of having molecules adopted in chronic diseases as being less responsive to price
variations. Nevertheless, there are also significant changes —see Aciclovir, Ciprofloxacin, and Allopuri-
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nol— with respect to the elasticity estimates of the full range of products (Figure 3(b)). The most price-
elastic molecules in our estimates —Ibuprofen, Metoprolol, and Bisoprolol— treat relatively common dis-
eases and, therefore adopted by a larger share of the population. On the contrary, the most price-inelastic
molecules —Risperidone, Aciclovir, and Ciprofloxacin— treat less common chronic diseases and are gen-
erally prescribed by a physician. Accordingly, those molecules have relatively smaller markets. As the
literature underlines (Torres et al., 2007), generics’ entry into small markets is typically more difficult. In
addition, there is no clear repositioning of the market from originators to generics after originators are off-
patent (Datta and Dave, 2017; Treur et al., 2009; Terrizzi and Meyerhoefer, 2020). A possible reason for such
failures might be the highly observable side effects of generic counterparts of some originator drugs (Gallelli
et al., 2013). Moreover, patients consuming such medicines may be reluctant to move to the generic coun-
terpart when the originator version is covered by their insurance or because of the fear of losing the benefits
given by the originator drug (Treur et al., 2009).

Overall, compared to the average price elasticities for the full range of pharmaceuticals (Figure 3),
generic products are substantially more price-elastic, both at the country and molecule level. This result
is intuitive because generic pharmaceuticals are off-patent and thus can have many substitutes within the
country and globally, leading to higher price sensitivity.

((a)) ((b))

Figure 9. Relationship between Price elasticity and (a) weighted price (b) Income as measured by
GDP Per Capita (PPP) for generics. The y-axis displays the own-price elasticity of generics, averaged on
33 molecules and period 2008-2020, for each country. The x-axis of (a) displays the log price of generics,
averaged on molecules and years, weighted by standard units. The x-axis of (b) displays the standardized
GDP per capita averaged for the period 2008-2020.

Figure 9(a) presents the relation between price elasticity and the price of generics. An inverse relation is
visible, yet is somewhat weaker compared to the full range of pharmaceutical products (Figure 5(a)). This
evidence validates hypothesis H1. The latter might be explained in light of the regulations adopted by the
majority of the countries in the sample to contain the variations in the price of generics (see Elhiny et al.,
2021, Puig-Junoy, 2010, Simoens, 2012 among others). Furthermore, even though price variations were
not artificially imposed, the price of generics tended to stabilize as an result of massive competition in the
generics market. These observations are key to investigating the weaker inverse elasticity rule of generics
compared to the overall range of drugs, since price variations are crucial to explaining price elasticities.
When we look at HICs and MLICs separately, the inverse relation between price elasticities and prices is
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very strong for HICs (Figure E.3), while it is almost neutral for MLICs (Figure E.4).
The relationship between price elasticities of generics and GDP per capita income appears to be positive,

as presented in Figure 9(b). The slightly positive association for the full range of countries turn out to be
negative when we consider HIC (Figure E.3) and MLIC (Figure E.4) separately. However, each specification
exhibits a low correlation between the two measures.

Overall, the analyses above suggest that cross-country Ramsey pricing of generic pharmaceuticals exists
in HICs while it is questionable in MLICs. This pattern might be driven by the fact that the majority of HICs
acknowledge that reference pricing strategies might lead to welfare losses, which could be fulfilled through
differential pricing manoeuvres (Persson and Jönsson, 2016). Regarding MLICs, differential pricing appears
to remain a difficult task due to the fact that, even if firms tried to set differential pricing, the end-patient
price in low-income countries "could be high due to price-gouging at the wholesale or retail levels due to
lack of retail or wholesale competition" (Yadav, 2010b).

4.3.4 A Robustness Check with Fixed Effects

In an effort to enforce our findings, we conducted a fixed effects analysis, the dependent variable being
log(P)i.. The bar indicates that the variable has been averaged on time t46 and the unit of observation is
either the country or the molecule. Furthermore, elasticities were in absolute terms.

The equation takes the following form:

log(P)i· = β0θ
own
0 +β1X +FE + ε

and

log(P)i· = β0θ
cross
0 +β1X +FE + ε.

Thus, an inverse proportionality implies that the higher the absolute value of θ own
0 or θ cross

0 (i.e., the more
own-price or cross-price elastic), the lower the price.

The primary reason for conducting two separate regressions is that own elasticities and cross elasticities
are already recovered by controlling for cross elasticities and own elasticities, respectively, in the main anal-
ysis 47. The goal is not only to focus on the average own and cross-elasticities as done in previous sections,
but to examine the robustness of both own and cross-elasticities across different countries (i.e. by control-
ling for molecule fixed effects we examine the effect of own and cross elasticities within each molecule and
across different countries) and across various molecules (i.e., by controlling for country fixed effects we
examine the effect of own and cross elasticities within each country and across molecules). Accounting for
these fixed effects is crucial because it eliminates the possible sources of unobserved heterogeneity. It also
provides a solid robustness check since –as highlighted in Appendix H –the higher fixed effects by country
belonged to those countries having a higher GDP (and higher average prices). This result is enforced when
turning just to generics, thus validating our previous findings. Finally, it allows us to summarize our findings
and to check if the source of variability across countries and across molecules is given by the cross or by the
own elasticity.

46The logic is to eliminate the time dimension and to avoid incurring into unobserved time fixed effects.
47In the sense that we controlled for the own-elasticity when estimating the cross-elasticity effects, and vice versa. The latter is a

consequence of the FWL theorem in our demand model described in the methodological section. By doing the above exercise, instead,
we can separately identify and measure the effects of own-price changes and cross-price changes on the outcome of interest (average
prices).
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Tables 1 and 2 report the aforementioned analyses. Notice that the coefficients are reported in absolute val-
ues. Namely, in the regressions, the regressor is |ε̂|. As an example when the estimated slope is negative:
β̂θ own

0
=−0.5443 (s.e. 0.061, p < 0.01) we reported its absolute value 0.5443 for compactness.

Table 1. Within-Between estimation (own elasticity)

All Products Generics
(1) (2) (3) (4)

Within Between Within Between
βθ own

0
0.4297* 0.0454 0.0601 0.5443***
(0.2112) (0.1023) (0.1162) (0.0610)

r2 (own) 0.1971 0.5871 0.2895 0.5601
N (own) 1319 1319 1089 1089
absvars id_ctry id_mol id_ctry id_mol
clustvar id_ctry id_mol id_ctry id_mol

Note: The dependent variable is log(P)i., the bar indicating that the
variable has been averaged on time t. The unit of observation i is
either country or molecule. id_ctry refers to country fixed effects;
id_mol refers to molecule fixed effects. βθ own

0
is the coefficient of

the effect of the own-elasticity on log(P)i.. Coefficients are in
absolute values. *** significant at 1%; **significant at 5%;

*significant at 10%.

Table 2. Within-Between estimation (cross elasticity)

All Products Generics
(1) (2) (3) (4)

Within Between Within Between
βθ cross

0
0.0299** 0.0099 0.0728*** 0.0151*
(0.0140) (0.0090) (0.0149) (0.0128)

r2 0.159 0.0586 0.213 0.384
N 34848 34848 31947 30628
absvars id_ctry id_mol id_ctry id_mol
clustvar id_ctry id_mol id_ctry id_mol

Note: The dependent variable is log(P)i., the bar indicating that the
variable has been averaged on time t. The unit of observation i is
either country or molecule. id_ctry refers to country fixed effects;
id_mol refers to molecule fixed effects. βθ cross

0
is the coefficient of

the effect of the cross-elasticity on log(P)i. Coefficients are in
absolute values. *** significant at 1%; **significant at 5%;

*significant at 10%.

The findings presented in Tables 1 and 2 highlight a significant impact of cross-elasticity, a factor pre-
viously underestimated in the literature. This effect is particularly evident across different countries and
within the generics market, which is known for its competitive nature. Such evidence supports the notion of
a Ramsey logic driven more by cross-elasticity than by own-elasticity, thereby strengthening the credibility
of our earlier estimates where we accounted for cross-elasticities. A strong and significant coefficient of
own-elasticity is reached across molecules and for generics. This latter evidence also confirms the presence
of Ramsey pricing across molecules.

Moreover, the analysis of fixed effects coefficients, as presented in Appendix H, reveals that more de-
veloped countries exhibit higher, positive, and statistically significant coefficients. This indicates that, when
controlling for elasticity, more developed countries tend to maintain higher average prices compared to less
developed ones, with Algeria serving as the reference point. Notably, India, Russia, and Turkey show a
negative and significant coefficient. These trends can be readily attributed to the greater income levels and
technological opportunities prevalent in more developed countries.

To highlight the importance of conducting a causal analysis to identify the presence of Ramsey pricing
among different groups of pharmaceuticals, it is useful to compare the findings of Tables 1 and 2 with the
descriptive results from the previous sections. Specifically, when contrasting Figure 5(a) and Figure 9(a), we
observed weaker evidence of the inverse relationship for generics than for all molecules. The explanation
we provided was that generic drug prices tend to stabilize to a constant level due to regulations and compe-
tition48. However, in the regressions presented in Tables 1 and 2, we found that Ramsey pricing strategies
are more commonly used for generics between molecules and within countries. At first glance, these re-
sults may seem contradictory without further explanation. The crucial factor is controlling for fixed effects
(FE). The intuition is that, once we control for country-level fixed effects, we account for the possibility that
regulations may flatten the price of generics. Simultaneously, competition between molecules is controlled
through the "between effects.".

48When averaged over time and across molecules
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In summary, the regression analysis reveals that the coefficient βθ cross
0

49 demonstrates significant sta-
tistical relevance for both within and across generic products. This finding indicates that Ramsey pricing
strategies are more commonly applied within the generic market as opposed to the wider product market.
The adoption of Ramsey pricing in highly competitive markets, along with the high substitutability inher-
ent to generic products, can explain this prevalence. Importantly, the notable impact observed is primarily
driven by cross-price elasticity, rather than own-price elasticity. This highlights the critical need to consider
own-price elasticity in the estimation of these elasticities. Past research may have mistakenly attributed a
positive effect to own-price elasticity, possibly due to challenges in accurately estimating cross-price elas-
ticity. This perceived effect is likely distorted by the previously underestimated role of cross-price elasticity.
Additionally, it’s important to note the significant between effects of own elasticities in the case of generics,
which stands in contrast to the scenario observed for all products.

Table 3 showcases a list of drug pairs that exhibit cross-elasticity in the 95th percentile across the majority
of the countries surveyed, suggesting a significant degree of substitution or complementary usage among
these medications. The calculation of cross-elasticities, based on their absolute values, was employed to
confirm the strength of these relationships. For example, the combination of Mesalazine and Loratadine is
highlighted for its remarkable cross-elasticity, reaching the 95th percentile in 25 countries, which points to
their potential for concurrent use or as substitutes for one another.

Table 3. Molecule pairs whose cross elasticity appears in the 95th quantile for the majority (more than half)
of countries.

Molecule pairs in 95th quantile
Cross-Molecules # of countries 95th

quantile
Allopurinol - Ciprofloxacin 18
Loratadine - Betamethasone 19
Amlodipine - Simvastatin 20
Acetylsalicylic Acid - Dexamethasone 20
Bisoprolol - Paracetamol 21
Carbamazepine - Omeprazole 21
Loratadine - Paracetamol 21
Loratadine - Salbutamol 23
Mesalazine - Loratadine 25

The observed phenomenon of drug pairings exhibiting significant cross-elasticity as per Table 3, can
be attributed to several pharmacological considerations that underpin logical therapeutic strategies. For
instance, Loratadine, an antihistamine, and Betamethasone, a corticosteroid, are commonly combined to
manage allergic reactions, reflecting a standard approach to treating various allergic conditions. Similarly,
Amlodipine and Simvastatin are often co-prescribed in cardiovascular risk reduction efforts, leveraging the
complementary benefits of a calcium channel blocker and a statin. The co-administration of Acetylsalicylic
Acid (Aspirin) and Dexamethasone is another example, where their anti-inflammatory properties are used
synergistically in clinical practice. Bisoprolol and Paracetamol may be used together for pain management in
patients with cardiovascular concerns, while Mesalazine and Loratadine could be prescribed concurrently for

49A negative coefficient (when controlling for molecule fixed effects) suggests that molecules with high substitutability with other
molecules (high cross elasticity) across countries sustain lower average prices for molecule i. Hence, higher coefficients in absolute
value demonstrate a higher adherence to Ramsey pricing.
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individuals suffering from both inflammatory bowel disease and allergic symptoms. In scenarios requiring
infection treatment in gout patients, Allopurinol and Ciprofloxacin might be administered together. Carba-
mazepine, known to cause gastrointestinal discomfort, is often sensibly paired with Omeprazole to mitigate
such adverse effects. The combination of Loratadine and Paracetamol is frequently observed in treating
cold and flu symptoms, providing both antihistaminic and analgesic/antipyretic benefits. Additionally, the
co-administration of Loratadine and Salbutamol is rationalized in asthma management, particularly when
allergic reactions are a contributing factor. These pairings, driven by patient-specific treatment protocols or
broader prescription trends, underscore the influence of clinical guidelines on prescribing practices.

5 Conclusion
The present study provides the first empirical attempt to analyze the Ramsey pricing of pharmaceuticals
by testing the validity of the inverse elasticity rule. It does so by (i) cautioning against using GDP per
capita as a stand-in for price elasticity of demand under non-homothetic preferences and heterogeneous in-
surance, showing formally that income shifts not necessarily move own-price elasticities when drug baskets
behave as near-necessities and insurance is uneven, (ii) establishing that, under Ramsey-Boiteux pricing,
the deadweight-loss share of total welfare is generically larger in more elastic (MLIC) environments than
in more inelastic (HIC) ones, thereby rationalizing why the inverse-elasticity rule should manifest more
cleanly across HICs, and (iii) extending the Ramsey rule to interdependent demands and insurance-induced
price distortions, yielding a closed-form markup system in which optimal prices depend on both own and
cross-price elasticities, a "Standard Ramsey Component," and an Insurance Distortion Amplifier term.

These results motivate estimating, at a granular level, both own and cross elasticities—rather than treat-
ing drugs as isolated goods—because, in the presence of substitution and coverage, cross-elasticities can do
“most of the work” in the optimal-pricing condition. Previous studies either theoretically analyzed Ramsey
pricing (Danzon, 1997; Danzon, Towse, and Mestre-Ferrandiz, 2015a; Barros and Martinez-Giralt, 2008)
or indirectly assessed its existence by looking at the relationship between pharmaceutical prices and income
(Maskus, 2001; Sherer and Watal, 2002). However, Ramsey pricing can be accurately analyzed only by
considering the association between price elasticities and prices, i.e. the inverse elasticity rule. To this end,
we first estimate the price elasticity of demand. It is well known that previous demand analyses —that are
within-country and at the insured patient level — considered pharmaceutical products as isolated entities,
assuming no cross-price effects of substitutes and complements. Moreover, those studies suffered from
omitted variables bias and endogeneity of prices. To overcome these methodological issues, we employ a
recently developed machine learning method (DDML) to estimate price elasticities.

The results show that the own-price elasticity of pharmaceuticals ranges from −2.53 to −0.06, even pos-
itive for some molecules. Unlike the long-standing idea that pharmaceutical demand tends to be inelastic,
the unit-specific estimates we perform demonstrate that pharmaceutical demand can be rather price-elastic
when high-granular data and methods are used. Furthermore, we consider non-self price, i.e. price of sub-
stitutes and complements, in the demand model, yielding relatively elastic estimates compared to previous
within-country coinsurance elasticity estimates, which neglected cross-price effects.

A cross-country assessment of the inverse elasticity rule shows that pharmaceutical prices vary inversely
with the price elasticities, both in HIC and MLIC, indicating the existence of Ramsey pricing in cross-
country pharmaceutical markets. However, within-country Ramsey pricing is questionable when we look
at pharmaceutical markets at the molecule level. For cross-country generic pharmaceuticals, the inverse
elasticity rule holds only in HIC, while within-country Ramsey pricing exists in both HIC and MLIC.

As with any other study, this study is not free of limitations. First of all, we accept the pharmaceutical
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prices given and are not interested in how pharmaceutical prices are set in markets. What we aim to do is to
analyse whether ex-post prices inversely vary with price elasticities. However, it is well known that regula-
tions, parallel trade, and reference pricing affect pharmaceutical prices and thus can affect price elasticities.
Moreover, Ramsey principles require a substantial qualification that may not be achieved in real markets due
to several barriers. First, pharmaceutical markets are heavily regulated, especially in the EU, where indi-
vidual governments can enjoy monopsony power. In such an environment, demand elasticities may not be
accurate (Maskus, 2001). Second, Ramsey pricing assumes well-segmented markets where price strategies
can be implemented independently (Schmidt et al., 2001a). For instance, the price for a product in Italy
should not be affected by the price of the same product in Germany. It is doubtful that this condition is met
in the EU because of parallel trade and reference pricing as mentioned above (Towse et al., 2015). Third,
the classical Ramsey problem applies to utilities when a sunk cost needs to be covered by a regulator that
earns normal profit (Danzon, Towse, and Mestre-Ferrandiz, 2015a). However, pharmaceutical companies
can earn more than normal profit thanks to patented products that provide monopolistic rents to manufactur-
ers (Yadav, 2010a). Accordingly, future studies should address these issues to better frame Ramsey pricing
of pharmaceuticals.
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A Appendix for Theory
To simplify the analysis in what follows, we model entire categories–such as all branded drugs (B) and
all generics (G)–as composite goods. Each category is treated as a single representative good, character-
ized by an average price, quantity, and income-sensitive demand behavior. This aggregation strategy is
widely adopted in structural models (Höffler, 2006; Barros and Martinez-Giralt, 2008; Comin et al., 2021),
and is supported by theoretical results showing that nested CES frameworks can capture within-category
heterogeneity through substitution elasticities, taste parameters, and composite price indices (Redding and
Weinstein, 2019). While this approach enhances tractability, it necessarily abstracts from molecular-level
heterogeneity in preferences, substitution patterns, and pricing. For instance, some branded drugs may be
life-saving essentials while others are elective, leading to potentially divergent income elasticities. Likewise,
not all generics exhibit the same substitutability or pricing structure, and insurance coverage often varies by
molecule rather than just by category. Nonetheless, the aggregation framework –through income sensitive
taste parameters, substitution elasticities, and composite price indices–captures key within-category hetero-
geneity, thereby mitigating the aforementioned potential distortions (Redding and Weinstein, 2019; Comin
et al., 2021). Another interesting feature of our framework is its scalability: it does not impose a restriction
on the number of varieties in the economy. In principle, it can be extended to include multiple subcategories
within the branded (B) and generic (G) classes –for example, B0,B1, . . . ,BNB and G0,G1, . . . ,GNG . However,
such an extension would require a more complex CES utility structure capable of capturing the full matrix of
substitution elasticities across all subcategories. While analytically feasible, this generalization introduces
significant dimensionality and is left for future research.

A.1 Consumers
In this section, we model consumer behavior by focusing on how individuals allocate their income across
branded drugs, generic alternatives, and a numeraire good. Consumers are assumed to face relative prices
and a budget constraint, and make consumption choices that maximize utility. To reflect realistic expenditure
patterns and preference heterogeneity across income groups, we employ a non-homothetic CES framework
inspired by Comin et al. (2021) and Hanoch (1975).

To simplify the analysis, we present the case where generic and branded drugs are substitutes (i.e. we
will impose σBG > 1). This approach can be generalized to situations where no assumption is made about
the elasticity of substitution between branded and generic drugs, as long as the elasticity is treated as an
exogenously given parameter — a more credible assumption in contexts like ours where it can be empirically
estimated. We force, however, the insurer to provide a fixed copayment rate δ since the analysis is focused
on relatively standard drugs. In other words, we force a common coinsurance rate applying equally to B and
G, so relative prices within the drugs block are unaffected. As a side note, we recognize that if δ differed by
type, all formulas hold replacing Pk with P̃k and relative prices and shares would then change.

To derive the demand functions and expenditure shares, Comin et al. (2021) consider the consumer’s
utility maximization problem, where preferences are represented by a non-homothetic CES utility aggrega-
tor:

1 = ∑
k∈{B,G,y}

( fk(Ul))
1
σ C

σ−1
σ

k,l ,

where k ∈ {B,G,y} indexes branded drugs (B), generic drugs (G), and a numeraire good (y); fk(Ul) is an
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income-dependent taste parameter for group l ∈ {LR,LP,HR,HP} – that is, fk(Ul) and subsequent quantities
are specified at the group level, representing the behavior of a representative consumer in each group. In
order to make the problem treatable, we treat branded and generic as composite types. Each underlying
product has a single posted price common across groups; we suppress the product index and denote the
class-level price by Pk. Group heterogeneity enters only via coverage. For the moment, we retain the general
form fk(Ul) rather than imposing a specific functional form to allow for flexibility in capturing heteroge-
neous, income-sensitive preferences across consumer groups. σ > 1 represents the constant elasticity of
substitution. Assuming a constant elasticity of substitution may seem restrictive, however when thinking
about it as the average elasticity of substitution between the goods in the economy, the latter becomes more
reasonable. Notice that the CES block is defined separately for each subgroup l. Hence, σ is the elasticity of
substitution only between goods k ∈ {B,G,y} within a given l. Quantities with different l belong to different
representative consumers and are not traded off in a single optimization. In particular, for instance, “B for
LR” and “B for LP” are not substitutes.

In the non-homothetic CES (NH-CES) framework of Comin et al. (2021), imposing a single elasticity
σ > 1 at the aggregate level makes all goods in the block gross substitutes (here: B with G, B with y, and G
with y). This may be restrictive when drug spending should not substitute closely with other consumption.
We therefore assume weak separability between pharmaceuticals and the numeraire and adopt a nested NH-
CES.

To keep the exposition parsimonious and aligned with standard NH-CES derivations, we restrict attention
to the drugs block only and model the allocation across k ∈ {B,G}. Since the final composition of the
consumer’s consumption bundle at income y is not central to our analysis, we restrict attention to a drugs-
only NH–CES block exploiting weak-separability. For each group l, let ED,l denote the group-specific total
drugs expenditure (taken as given in this within-drugs problem). Preferences over B and G are represented
by a non-homothetic CES aggregator, normalized to one:

1 = ∑
k∈{B,G}

fk(Ul)
1/σ C(σ−1)/σ

k,l , σ > 1, fk(Ul)> 0. (A.1)

The latter normalization is a choice of units (“one unit of drug utility”). It only fixes the scale of the utility
index so that prices and the taste terms fk(Ul) have consistent units. Marginal rates of substitution and
optimal choices are unaffected by that normalization.

A convenient Lagrangian for the static primal problem (drugs-only, aggregator normalized) is

L =Ul +ρ

(
1− ∑

k∈{B,G}

[
fk(Ul)

] 1
σBG C

σBG−1
σBG

k,l

)
+λ

(
ED,l − ∑

k∈{B,G}
P̃k,l Ck,l

)
,

where ρ and λ are multipliers. In order to simplify the notation, we redefine σ
def
= σBG. We follow Comin

et al. (2021) that treats fk(·) as a function of the utility index Ul for expositional convenience. Notice that
the utility Ul appears directly in the Lagrangian because the optimization problem is framed in dual form.
Ul affects demands only via fk(Ul).

The first-order condition with respect to Ck,l is

∂L

∂Ck,l
=−ρ ( fk(Ul))

1
σ

σ −1
σ

C
σ−1

σ
−1

k,l −λ P̃k,l = 0,

which rearranges to

P̃k,lCk,l =
ρ

λ

(
1−σ

σ

)
( fk(Ul))

1
σ C

σ−1
σ

k,l .
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Summing over all goods k ∈ {B,G}, we have that

ED,l = ∑
k∈{B,G}

P̃k,lCk,l =
ρ

λ

(
1−σ

σ

)
∑

k∈{B,G}
( fk(Ul))

1
σ C

σ−1
σ

k,l .

By the utility aggregator’s definition (such that the sum is equal to 1, see above), this simplifies to

ED,l =
ρ

λ

(
1−σ

σ

)
.

Define the expenditure share sk,l for each good k as sk,l =
P̃k,lCk,l

ED,l
. Substituting from above, we obtain

sk,l = ( fk(Ul))
1
σ C

σ−1
σ

k,l .

Solving for Ck,l , we derive the demand function for each good:

Ck,l =

(
ED,l

P̃k,l

)σ

fk(Ul),

with expenditure shares given by

sk,l =

(
P̃k,l

PD,l

)1−σ

fk(Ul).

Finally, substituting Ck,l =
(

ED,l
P̃k,l

)σ

fk(Ul) back into the ED,l device yields

ED,l = ∑
k∈{B,G}

P̃k,lCk,l = ∑
k∈{B,G}

P̃k,l

(
ED,l

P̃k,l

)σ

fk(Ul),

which simplifies to
E1−σ

D,l = ∑
k∈{B,G}

P̃1−σ

k,l fk(Ul).

This equation characterizes ED,l as a function of prices P̃k,l and income-dependent preferences fk(Ul).

We can then rearrange ED,l as:

ED,l =

(
∑

k∈{B,G}
P̃1−σ

k,l fk(Ul)

) 1
1−σ

,

The elasticity of total drug expenditures for group l with respect to utility, denoted η
El
Ul

, –where we have
called El :=ED,l to ease up the notation and for indicating more clearly that we are referring to an expenditure
–is defined as:

η
El
Ul

≡ ∂El

∂Ul

Ul

El
.

Taking the derivative of El with respect to Ul , we obtain:

∂El

∂Ul
=

1
1−σ

Eσ
l ∑

k∈{B,G}
P̃1−σ

k,l
∂ fk(Ul)

∂Ul
.
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Then, multiplying by Ul
El

, we have:

η
El
Ul

=
1

1−σ
∑

k∈{B,G}
sk,lη

fk
Ul
,

since P̃1−σ

k,l fk(Ul) = E1−σ

l sk,l and El moves out of the sum over k being independent from k. sk,l =
P̃k,lCk,l

El
is

the expenditure share for each good k, and η
fk

Ul
= ∂ fk(Ul)

∂Ul

Ul
fk(Ul)

is the elasticity of the taste parameter fk(Ul)

with respect to Ul .

Using the derived demand functions, the relative demand between any two goods Ck′,l and Ck′′ ,l (where
k′,k′′ ∈ {B,G} and l ∈ {LR,LP,HR,HP}) is given by:

Ck′ ,l

Ck′′ ,l
=

(
P̃k′′ ,l

P̃k′ ,l

)σ

fk′ (Ul)

fk′′ (Ul)
. (A.2)

For the sake of completeness it is easy to show – using Eq. A.2 – that in this set up, combinations like, for
instance, “B for LR” and “B for LP” are not substitutes. Indeed, with a uniform posted price PB and fixed

copay rates δB,l ,
CB,LR
CB,LP

=
(

ILR
ILP

)σ ( 1−δB,LP
1−δB,LR

)σ fB(ULR )

fB(ULP )
, ⇒ ∂ log

(
CB,LR/CB,LP

)
∂ logPB

= 0.

The elasticity of substitution between goods k
′

and k
′′
, denoted η

C
k′ ,l

/C
k′′ ,l

P̃
k′ ,l

/P̃
k′′ ,l

, measures the response of the

relative demand
C

k′ ,l
C

k′′ ,l
to changes in the relative price

P̃
k′ ,l

P̃
k′′ ,l

:

η
C

k′ ,l
/C

k′′ ,l
P̃

k′ ,l
/P̃

k′′ ,l
=

∂ log(Ck′ ,l/Ck′′ ,l)

∂ log(P̃k′ ,l/P̃k′′ ,l)
= σ .

The elasticity of relative demand between goods (drugs specifically) k
′

and k
′′

with respect to utility Ul ,

denoted η
C

k′ ,l
/C

k′′ ,l
Ul

, is given by:

η
C

k′ ,l
/C

k′′ ,l
Ul

=
∂ log(Ck′ ,l/Ck′′ ,l)

∂ logUl
=

∂ log fk′ (Ul)

∂ logUl
−

∂ log fk′′ (Ul)

∂ logUl
= η

f
k′

Ul
−η

f
k′′

Ul
.

The elasticity of demand for drug type k
′

with respect to total expenditure El is:

η
C

k′ ,l
El

:=
∂ logCk′ ,l

∂ logEl
.

Using Ck′ ,l =
(
El/P̃k′ ,l

)σ fk′ (Ul),

η
C

k′ ,l
El

=
∂ logCk,l

∂ logEl
= σ +

∂ log fk′ (Ul)

∂ logEl
= σ +

η
f
k′

Ul

η
El
Ul

,

where η
f
k′

Ul
:=

∂ log f
k′
(Ul)

∂ logUl
and η

El
Ul

:= ∂ logEl
∂ logUl

. From the expenditure identity E 1−σ

l = ∑ j∈{B,G} P̃1−σ

j,l f j(Ul),

η
El
Ul

=
1

1−σ
∑

j∈{B,G}
s j,l η

f j
Ul
, s j,l :=

P̃j,lC j,l

El
.
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Thus, η
C

k′ ,l
El

equals the substitution effect σ plus a non-homothetic correction term η
f
k′

Ul
/η

El
Ul

, which captures
how tastes vary with utility relative to how total drug expenditure varies with utility.

We now turn to the income isoelastic case, which is particularly relevant in our context, as it allows drug
demand to vary systematically with income—an important feature given the well-documented sensitivity of
pharmaceutical consumption to income levels in MLICs. In this specification, each good’s taste parameter
depends on group-specific consumption, meaning that richer groups place relatively greater weight on goods
with higher income elasticity, while poorer groups allocate relatively more to necessities. Namely, assuming
a CES utility function where each good variety k has a taste parameter ωk and a non-homothetic elasticity
parameter eik, we express demand functions and elasticities as follows. Define fk(Ul) = fk(Cl) = ωkC

eik
l ,

where Cl represents aggregate consumption for group l. Then, the demand for good variety k and its expen-
diture share are given by:

Ck,l = ωk

(
El

P̃k,l

)σ

Ceik
l = ωk

(
P̃k,l

P̃l

)−σ

Ceik+σ

l ,

sk,l = ωk

(
P̃k,l

El

)1−σ

Ceik
l = ωk

(
P̃k,l

P̃l

)1−σ

Ceik−(1−σ)
l .

The total expenditure function and the aggregate price index for group l are then:

El =

(
∑

k∈{B,G}
ωkP̃1−σ

k,l Ceik
l

) 1
1−σ

,

P̃l =
1
Cl

(
∑

k∈{B,G}
ωkP̃1−σ

k,l Ceik
l

) 1
1−σ

.

The income elasticity of demand for each drug k is given by:

η
Ck,l
Cl

= ση
El
Cl

+ eik

where η
El
Cl

= ∂El
∂Cl

Cl
El

. It is easy to see that, log(Ck,l) = log(ωk) + σ log(El)−σ log(P̃k,l) + eiklog(Cl),

therefore, log(Ck,l)

∂Cl
=

log(ωk)

∂Cl︸ ︷︷ ︸
=0

+σ
∂ log(El)

∂Cl︸ ︷︷ ︸
:=η

El
Cl

−σ
∂ log(P̃k,l)

∂Cl︸ ︷︷ ︸
=0

+eik
∂ log(Cl)

∂Cl︸ ︷︷ ︸
=eik

= ση
El
Cl

+ eik.

Finally, the elasticity of total drug expenditure with respect to aggregate consumption is:

η
El
Cl

=
1

1−σ
∑

k∈{B,G}
sk,lη

fk
Cl

=
1

1−σ
∑

k∈{B,G}
sk,leik.

The income elasticity of demand for each drug i, η
Ck,l
El

, is:

η
Ck,l
El

= σ +(1−σ)
eik
ēil

, (A.3)

where ēil = ∑k∈{B,G} sk,leik is the average income elasticity across drugs for group l. This expression implies
that if eik > ēil , then good variety k is a luxury (i.e., it has an expenditure elasticity greater than 1); if eik < ēil ,
then it is a necessity.
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A.2 Producer
The producer faces a fixed R&D cost, F , such that it is impossible to set prices equal to marginal cost. F
is unavoidable and sunk in the short run. The producer supplies two types of goods, branded drugs (B) and
generic drugs (G), to a population divided into two consumer groups: LR,HR (richer consumers) comprising
a share r of the population, and HP,LP (poorer consumers) comprising the remaining 1− r.

Let Pk be the price of a drug k in a country. For the sake of simplicity we assume that a uniform pricing
regime is adopted. Pk is independent of the groups in l in the sense that, a priori, no price differentiation is
made based on income A.1. More formally and at the risk of being repetitive, there are n distinct products
indexed by i ∈ {1, . . . ,n}. Each product carries a type label k ∈ {B,G} (branded or generic). The posted
(administered) price Pi is uniform across income groups l; the effective price faced by group l is P̃i,l =(
1− δi,l

)
Pi, where δi,l ∈ [0,1) is the group– and product–specific coverage rate. Let qi,l denote demand of

product i by group l and qi := ∑l qi,l the total quantity.
In line with other models (Adida, 2021), the producer is aware of the consumers’ demand and decision

process. In particular the following is given:

i The inverse demand curve for good k for group l is derived as

P̃k,l = ED,l

(
fk(Ul)

Ck,l

)1/σ

, σ > 1. (A.4)

where ED,l = ∑k∈{B,G} P̃k,lCk,l represents total (drugs) expenditure for a consumer in group l, fk(Ul)
is the income-dependent taste parameter, and σ > 1 is the elasticity of substitution In this simplified
framework, all goods of type B and G are modeled as symmetric substitutes – i.e. a change in the
price of any generic drug (i.e. the representative generic drug) affects the demand for every branded
drug, and vice versa. Extending the model to allow for heterogeneous interdependencies (such as the
possibility that certain pairs of drugs may be complements or independent) is left for future research,
though it falls outside the scope of the present analysis due to added complexity in functional form
and estimation.
Differentiating with respect to Ck,l yields:

∂ P̃k,l

∂Ck,l
=− 1

σ
ED,l fk(Ul)

1/σ C−1/σ−1
k,l =− 1

σ

P̃k,l

Ck,l
< 0,

since Il > 0, fk(Ul)> 0, Ck,l > 0, and σ > 1. Hence, the inverse demand curve is downward-sloping.

ii The expenditure function for each group l responds to prices:

ED,l =

(
∑

k∈{B,G}
P̃1−σ

k,l fk(Ul)

) 1
1−σ

,

Taking the derivative with respect to any price P̃j,l yields:

∂ED,l

∂ P̃j,l
= Eσ

D,lP̃
−σ

j,l f j(Ul),

A.1However, the effective price paid by each group differs due to group-specific insurance coverage, with P̃k,l = (1− δk,l)Pk , where
δk,l reflects the proportion of the nominal price covered by insurance. The effective price Pk satisfies

max
Pk

∑
l

[
(Pk −MCk))D(Pk,l)

]
.
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showing that ED,l adjusts when prices change. This is consistent with the CES structure, where relative
prices influence expenditure allocation.

iii We keep a general formulation in what follows. However, in order to obtain a closed-form and to
simplify calculations we may want to set fk(Ul) = ωkC

eik
l , where Cl > 0 is aggregate consumption for

group l, ωk > 0 is a constant, and eik governs non-homothetic preferences. It can be easily verified
that fk(Ul) is , in this case, well-defined, continuous, and differentiable with respect to Cl . Notice that
economically, fk(·) is a group-specific taste weight that captures non-homotheticity. Higher fk means
group l places relatively more weight on good k at a given price vector. In line with standard NH–CES
practice, we assume fk depends on the group’s income/utility (e.g., Ul or Cl) but not directly on posted
prices. This is an important observation since – as we will see– FOCs depend on the price-derivative
matrix ∂q j,l/∂Pk and on the break-even constraint. Thus, as long as fk does not depend on prices, the
structure of those derivatives (and hence the markup system) is unchanged.

As we will better see in the next Section, on the cost side, technology is captured by a joint cost with a fixed
R&D component F and product-level marginal costs ck:

C(q) = F +∑
k

ck qk, MCk = ck, ∑
k
(Pk − ck)qk = F.

The regulator chooses posted prices P = {Pk}k to maximize welfare subject to break-even:

max
P

W (P) s.t. ∑
k
(Pk − ck)qk(P) = F,

where W aggregates consumer surplus (integrated over P̃k,l), producer surplus, and the fiscal cost of coverage
(1+ξ )δk,lPkqk,l(P). The first-order conditions will yield a multiproduct Ramsey system.

A.3 Welfare Optimization and Ramsey Pricing
The literature acknowledges that Ramsey pricing applies in this context because the demand system, while
dependent on both prices and income, features separable preferences where income effects ( fk(Ul)) adjust
demand independently of price. As Wilson (1993) highlights, Ramsey principles extend to nonlinear con-
texts by incorporating effective elasticities, which in this case reflect both substitution and income effects.
Thus, price-cost margins can be optimally adjusted to balance welfare and revenue constraints, consistent
with the broader applicability of Ramsey pricing (Laffont and Tirole, 1993).

We assume the existence of a regulator that will define prices as to maximize social welfare. The welfare
function aggregates consumer surplus, producer surplus, and public distortion costs across income groups
and drug types, reflecting the trade-offs inherent in Ramsey pricing. Specifically, consumer surplus is de-
rived from the inverse demand curves of each income group for branded and generic drugs, capturing their
heterogeneous preferences and expenditures. Producer surplus ensures the recovery of production and R&D
costs, while the public distortion cost penalizes subsidies or reimbursements funded through distortionary
mechanisms Barros and Martinez-Giralt (2008). This structure of W allows for the explicit representation
of heterogeneity in consumer preferences (via income-dependent taste parameters) and substitution effects
between branded and generic drugs (via CES utility), ensuring that welfare maximization respects budget
constraints and equity considerations. The welfare function is given by:

W = ∑
l

∑
k∈{B,G}

(∫
∞

P̃k,l

qk,l(u;P)du − (1+ξ )δl,k Pk qk,l(P) + (Pk − ck)qk,l(P)
)

− F, (A.5)
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where u is the integration variable and the consumer surplus is written as a price–integral. Namely, following
Barros and Martinez-Giralt (2008) we integrate quantity with respect to price from the effective price P̃k,l
actually paid by group l (not the posted price Pk) up to the choke price, which is +∞ under CES/isoelastic
demand (since q → 0 ⇒ p → ∞); hence the integrand is the demand qk,l . We furthermore have that:

• l ∈ {LP,LR,HR,HP} represents income groups (low-income and high-income),

• k ∈ {B,G} represents drug types (branded and generic),

• P̃k,l(Ck,l) is the inverse demand for good k and group l. We highlight here that the stress is on effective
prices according to the intuition of Barros and Martinez-Giralt (2008),

• qk,l is the demand of good k by group l. Total demand for each good k across all income groups is
qk =∑l∈{LP,LR,HR,HP} qk,l , making the welfare function directly comparable to the setup in the Ramsey-
Boiteux framework. This formulation retains the heterogeneity of preferences (via fk(Ul)) and substi-
tution effects (via σ ), while maintaining the downward-sloping nature of the inverse demand curve,

• δl,k is the copayment rate,

• ck is the marginal cost of producing good k,

• ξ is the distortion cost of public funds A.2,

• F is the fixed R&D cost.

To derive the optimal pricing rule for each drug type k (branded B or generic G), we start with the first-
order condition (FOC) from the welfare maximization problem. The welfare function is given by Eq. (A.5)
and the cost-recovery constraint ensures that the producer surplus covers the fixed costs F :

∑
k∈{B,G}

(Pk − ck)qk = F,

where qk = ∑l qk,l is the total demand for drug k. An implicit assumption here is that market demand ag-
gregates linearly. Furthermore, as aforementioned, unless stated otherwise, we assume a common σ across
groups (one may also allow σ = σl).

The Lagrangian for this constrained maximization problem is:

L =W +λ

(
∑

k∈{B,G}
(Pk − ck)qk −F

)
,

where λ is the Lagrange multiplier associated with the cost-recovery constraint.
Differentiating the Lagrangian L with respect to Pk, the price of drug k, gives the FOC:

∂L

∂Pk
= ∑

l

[
− (1−δl,k)qk,l − (1+ξ )δl,k

(
qk,l +Pk

∂qk,l

∂Pk

)
− (1+ξ ) ∑

j ̸=k
δl, j Pj

∂q j,l

∂Pk

+qk,l +(Pk − ck)
∂qk,l

∂Pk
+ ∑

j ̸=k
(Pj − c j)

∂q j,l

∂Pk

]
+λ

[
qk +(Pk − ck)

∂qk

∂Pk
+ ∑

j ̸=k
(Pj − c j)

∂q j

∂Pk

]
= 0.

A.2The effective price P̃k,l reflects what consumers actually pay and drives their demand behavior, while the term (1+ξ )δl,kPkCk,l
captures the social cost of public subsidies, i.e. the cost of raising the money for copaymets, which causes distortions (e.g., via taxes).
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where the sum over k disappears since linearity let us take the derivatives inside the sums and since we are
focusing on a specific good k. After combining the level terms it turns out to be

∂L

∂Pk
= ∑

l

[
−ξ δl,k qk,l − (1+ξ )∑

j
δl, j Pj

∂q j,l

∂Pk
+∑

j
(Pj − c j)

∂q j,l

∂Pk

]
+λ

[
qk +∑

j
(Pj − c j)

∂q j

∂Pk

]
= 0.

where the first term is derived by differentiating the consumer surplus integral with respect to Pk, applying
the Leibniz rule to account for the dependence of the lower limit P̃k,l = (1− δl,k)Pk on Pk. The sum taken
over j includes good k unless otherwise specified. From CES utility function we know that each good’s
demand depends not only on its own price but also on the prices of other goods due to the underlying
substitution effects. In such settings, deriving the FOCs for welfare maximization requires accounting for

the full Jacobian matrix of the demand system—that is, all partial derivatives
∂qk′,l
∂Pk

for all k,k′ ∈ {B,G}. This
is because changes in the price of one good affect the consumption of other goods, altering both consumer
surplus and the feasibility of the cost-recovery constrain. Accounting for this ,we obtain the following FOCs:

0 =
∂L

∂Pk
= ∑

l

[
−ξ δl,k qk,l − (1+ξ )∑

j
δl, j

Pj

Pk
q j,l εk j,l +∑

j

Pj − c j

Pk
q j,l εk j,l

]

+λ

[
qk +∑

j

Pj − c j

Pk
∑

l
q j,l εk j,l

]
,

(A.6)

Then by separating the j = k terms from the j ̸= k ones, we obtain the following:

0 =
∂L

∂Pk
= ∑

l

[
−ξ δl,k qk,l − (1+ξ )δl,k qk,l εkk,l − (1+ξ ) ∑

j ̸=k
δl, j

Pj

Pk
q j,l εk j,l

+
Pk − ck

Pk
qk,l εkk,l + ∑

j ̸=k

Pj − c j

Pk
q j,l εk j,l

]

+λ

[
qk +

Pk − ck

Pk
∑

l
qk,l εkk,l + ∑

j ̸=k

Pj − c j

Pk
∑

l
q j,l εk j,l

]
,

(A.7)

where εk j,l =
∂q j,l
∂Pk

· Pk
q j,l

is the cross-price elasticity of demand (for j ̸= k), and εkk,l =
∂qk,l
∂Pk

· Pk
qk,l

is the own-
price elasticity of demand. Define the following aggregates (all sums are over l):

Ak := ∑
l

qk,lεkk,l , Bk j := ∑
l

q j,lεk j,l , Dk := ∑
l

δl,kqk,l , ∆k := ∑
l

δl,kqk,lεkk,l , ∆k j := ∑
l

δl, jq j,lεk j,l .

Let µi :=
Pi − ci

Pi
denote the markup on product i. Ak is the own–elasticity–weighted quantity for k; Bk j

collects the cross responses of j to Pk; the ∆’s are the same objects but insured-weighted via δl,·.
We can now collect the µ-terms on the left hand side. Using the definitions above, (A.7) can be rewritten as

(1+λ )µk Ak +(1+λ ) ∑
j ̸=k

µ j
Pj

Pk
Bk j = ξ Dk +(1+ξ )

[
∆k + ∑

j ̸=k

Pj

Pk
∆k j

]
−λqk.

where qk := ∑l qk,l .
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Each bracket in (A.7) contributes either a level term (−ξ δl,kqk,l and −λqk) or an elasticity term mul-
tiplied by a markup (producer surplus pieces) or by (1+ ξ ) times a subsidy (fiscal distortion). The factor
(1+λ ) comes from adding the same elasticity block inside and outside the constraint term.
Solving for the target mark-up µk (division by (1+λ )Ak ̸= 0)

µk =− ∑
j ̸=k

µ j

(
Bk j

Ak

Pj

Pk

)
+

ξ Dk +(1+ξ )
[
∆k +∑ j ̸=k

Pj
Pk

∆k j

]
−λqk

(1+λ )Ak

˙

This is a linear system in the markups. The own object Ak sits in the denominator (Ramsey logic); cross-
market couplings enter via Bk j.
Define

ε̄kk :=
Ak

qk
, ε̄ jk :=

Bk j

q j
, ε̄

δ
kk :=

∆k

qk
, ε̄

δ
jk :=

∆k j

q j
, δk :=

Dk

qk
.

These are natural q-weighted averages across groups l. With standard demand, ε̄kk < 0.

µk =− ∑
j ̸=k

µ j

(
q j

qk

ε̄ jk

ε̄kk

Pj

Pk

)
+

ξ δk +(1+ξ )ε̄δ
kk + (1+ξ )∑ j ̸=k

q j
qk

ε̄δ
jk

ε̄kk

Pj
Pk

− λ

(1+λ ) ε̄kk
. (A.8)

The first sum is the cross–markup spillover; the fraction with ε̄kk in the denominator is the Ramsey “core”.
The insured-weighted elasticities produce fiscal/insurance corrections. While the latter looks like a very
complex formula, it can be easily related to the literature on Ramsey pricing. Namely, let’s define the
(directional) Höffler term from j to k and its policy-corrected counterpart (Höffler, 2006):

M( j→k)
Höffler :=−

q j

qk

ε̄ jk

ε̄kk

Pj

Pk
, Mδ ,( j→k)

Höffler-corrected :=
1+ξ

1+λ

q j

qk

ε̄δ
jk

ε̄kk

Pj

Pk
.

Also set

IDA :=
ξ δk +(1+ξ )ε̄δ

kk
(1+λ ) ε̄kk

, SRC :=− λ

(1+λ ) ε̄kk
.

where SRC stands for Standard Ramsey Component and IDA for Insurance Distortion Amplifier. In particu-
lar, the IDA term is the part of the optimal markup that internalizes the fiscal externality created by insurance
coverage. Another way to write the IDA is as follows

IDA =
1+ξ

1+λ
θk − ξ δk

(1+λ )ηk
,

where ξ is the cost of public funds, λ is the multiplier on the break-even constraint, θk ∈ [0,1] is the
coverage-weighted share of marginal consumption (formally θk = ε̄δ

kk/ε̄kk), δk is the usual average coverage
share, and ηk := −ε̄kk > 0 is the absolute own-price elasticity. It easy to see that the larger the fraction of
insured marginal units (θk) and the higher the fiscal distortion (ξ ), the higher the markup—tempered by
1+λ . The second (negative) term is an elasticity correction: with broad average coverage (δk) but elastic
demand (large ηk), a small price rise already cuts subsidized quantities, so less extra markup is needed. If
there is no insurance (θk = δk = 0), IDA = 0; if the revenue constraint dominates (λ → ∞), IDA fades; as
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ηk → ∞, IDA → 1+ξ

1+λ
θk. This is in line with the observations in Barros and Martinez-Giralt (2008).

With the above definitions, (A.8) becomes

Pk − ck

Pk
= ∑

j ̸=k
µ j M( j→k)

Höffler + ∑
j ̸=k

Mδ ,( j→k)
Höffler-corrected + IDA + SRC . (A.9)

.

Proposition A.1 (Optimal Ramsey markups with insurance and interdependencies in demand):
Consider two drug types k ∈ {B,G} and income groups l, with (i) separable preferences yielding
inverse demand in effective prices P̃k,l , (ii) interdependent demands, (iii) per-unit coverage δl,k
and fiscal distortion ξ , and (iv) a regulator maximizing W as in Eq. (A.5) subject to the break-
even constraint ∑k(Pk − ck)qk = F with multiplier λ , where qk = ∑l qk,l .
Let µi := Pi−ci

Pi
, then the Ramsey rule applies as follows:

Pk − ck

Pk
= ∑

j ̸=k
µ j M( j→k)

Höffler + ∑
j ̸=k

Mδ ,( j→k)
Höffler-corrected + IDA + SRC .

where

M( j→k)
Höffler :=−

q j

qk

ε̄ jk

ε̄kk

Pj

Pk
, Mδ ,( j→k)

Höffler-corrected :=
1+ξ

1+λ

q j

qk

ε̄δ
jk

ε̄kk

Pj

Pk
.

and

IDA :=
ξ δk +(1+ξ )ε̄δ

kk
(1+λ ) ε̄kk

, SRC :=− λ

(1+λ ) ε̄kk
.

The whole analysis can be tailored and connected to the consumer and producer models studies above.
Specifically, using NH–CES and under isoelastic inverse demand, the consumer–surplus integral collapses
to

CSk,l =
P̃k,l qk,l

σ −1
,

so welfare becomes a sum of simple price–quantity terms, with all own- and cross-price effects embed-
ded in sk,l(P). This preserves the FOCs and the Ramsey markup system, because the full demand Jacobian
∂q j,l/∂Pk arises from the dependence of the shares/price index on P.

A.4 Example with Uneven Insurance Coverage in MLICs
In what follows assumptions T.1-T.4 of the main text hold and the focus shifts on a representative MLIC,
L. Additionally, for this example, we conjecture that in low-income country L insurance coverage may be
uneven across income groups (van Hees et al., 2019; Osei Afriyie et al., 2022). Wealthier consumers (LR)
enroll in private insurance reducing effective prices similar to those in H and enabling a higher allocation in
pharmaceutical expenses. On the contrary, poorer consumers (LP), do either rely on poorly designed social
insurance or do not have an insurance plan at all (van Hees et al., 2019). Accordingly, δLP,B+δLP,G ≃ 0, and
LP face full prices. Hence, a further assumption to (T.1-T.4) is that

T.5 In L, the LR share of the population faces prices P̃k < Pk, k ∈ {B,G} since δLR,B + δLR,G >> 0,
whereas people in the LP share face prices P̃k ≃ Pk, k ∈ {B,G} since δLP,B +δLP,G ≃ 0
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Suppose that assumptions (T.1-T.5) hold, then the income elasticity of demand for each type of good,
η

Ck,l
El

, is:

η
Ck,l
El

= σ +(1−σ)
eik
ēil

, (A.10)

where ēil = ∑k∈{B,G} sk,leik is the average income elasticity across drugs for group l with sk,l being the
expenditure-share of good k for group l, i.e. the fraction of that group’s total outlay Il devoted to k.A.3. To
clarify the distinction between ρ and s, we remind the reader that ρB and ρG represent within–drug-basket
shares—that is, the fractions of pharmaceutical consumption that are branded and generic, respectively,
such that ρB +ρG = 1. In contrast, sk,l denotes a budget share: the proportion of group l’s total expenditure
allocated to good k, with sB,l + sG,l + sy,l = 1. In other words, ρ describes how consumers split their drug
basket, while s describes how they split their entire wallet. Importantly, expression (A.10) implies that if
eik > ēil , then good variety k is a luxury, while if eik < ēil , then it is a necessity.

For the poor group LP, limited income ILP and high effective prices for pharmaceuticals due to OOP
expenses (P̃B,LP ≈ PB and P̃G,LP ≈ PG) lead–whenever the numeraire is a substitute to pharmaceutical ex-
penditure – to a larger budget share allocated to the numeraire good y, which typically has a lower income
elasticity. Consequently the share of income allocated to the numeraire, sy,LP , is relatively large, reducing
the average income elasticity ēiLP = ∑k∈{B,G} sk,LPeik. We hence have eiB,eiG > ēiLP , classifying branded

and generic drugs as luxuries for LP with η
Ck
E > 1 for k ∈ {B,G}A.4

In contrast, for the rich group LR, higher income ILR and insurance coverage reduce effective prices
(P̃B,LR < PB and P̃G,LR < PG), leading to a higher budget share allocated to pharmaceuticals relative to the
numeraire good. This increases the shares of income allocated to branded and generics by LR, sB,LR and
sG,LR , in the calculation of ēiLR = ∑k∈{B,G} sk,LR eik, making ēiLR relatively high. Thus, we may plausibly

conclude that eiB,eiG < ēiLR , branded and generic drugs are classified as necessities for LR with η
Ck
E < 1 for

k ∈ {B,G}. Thus,

T.6 Given assumptions (T.1–T.5) and the restriction that the monopolist sets uniform nominal prices for
all consumers (with differences in effective prices arising from group-specific insurance coverage),
pharmaceuticals are considered luxury goods for the poor group LP, where income elasticities (ηCk

E >
1) classify them as luxuries due to higher price sensitivity, and necessity goods for the rich group LR,
where insurance coverage reduces effective prices and results in lower income elasticities (ηCk

E < 1).

Let’s now suppose that a proportional drop in GDP in L, affecting both ILP and ILR , occurs. Such a pro-
portional drop in GDP has asymmetric effects on the classification of pharmaceuticals as luxury or necessity
goods for the poor (LP) and rich (LR) groups. For LP, pharmaceuticals (B and G) are already classified as
luxury goods, as their income elasticity of demand satisfies η

Ck,LP
ELP

= σ +(1−σ) eik
ēiLP

> 1 due to eik > ēiLP ,

where ēiLP = ∑k∈{B,G} sk,LPeik. A reduction in income ILP increases the budget share allocated to the nu-

meraire good y, as sk,LP =

(
P̃k,LP
ILP

)1−σ

fk(ULP), and P̃y,LP < P̃B,LP , P̃G,LP makes y more affordable relative to

drugs. As sy,LP increases and the income elasticity for y (eiy) is typically low, the average income elasticity
ēiLP decreases, further reinforcing eiB,eiG > ēiLP . This deepens the classification of branded and generic

A.3The derivation of Eq.A.10 is provided in Appendix A.
A.4The expenditure shares sk are defined as sk =

(
P̃k
Il

)1−σ

fk(U), where P̃k is the effective price of good k for income group l, Il is the

income of the group, σ is the elasticity of substitution, and fk(U) reflects the utility-based preferences for good k.
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drugs as luxuries for LP, causing drug consumption Ck to drop disproportionately, as ∂Ck
∂ ILP

= η
Ck
E · Ck

ILP
> Ck

ILP

A.5. For LR, pharmaceuticals are classified as necessities, with η
Ck,LR
ELR

=σ +(1−σ) eik
ēiLR

< 1 due to eik < ēiLR ,

where ēiLR = ∑k∈{B,G} sk,LR eik. While ILR also decreases proportionally, insurance coverage ensures that ef-
fective prices remain low, stabilizing the allocation of budget shares sB,LR and sG,LR as long as P̃B,LR < PB
and P̃G,LR < PG. This modestly increases sy,LR but does not significantly affect ēiLR , preserving the condi-
tion eiB,eiG < ēiLR and maintaining the classification of branded and generic drugs as necessities for LR.
As a consequence, the proportional GDP drop leads to reduced pharmaceutical consumption for LP, while
consumption for LR remains stable.

Let us now assume that there is an external regulator setting prices according to the Ramsey rule and
analyze how prices are affected by an exogenous shock to GDP. More precisely, the Ramsey pricing rule in
Equation (A.9) of Appendix A applies. The latter is an interesting result per se. In this setting, the LP group
is more likely to be excluded from the consumption of pharmaceuticals even when Ramsey rule applies.

To see this notice that to ensure that the uninsured low-income group LP can still purchase a positive bundle
of branded and generic drugs after a proportional GDP shock, the two posted prices (PB,PG) must satisfy(

PB
ILP

)1−σ

fB(ULP) +
(

PG
ILP

)1−σ

fG(ULP) ≤ 1, σ > 1.

since the drug–budget shares that come out of the CES demand must leave at least some non-negative
income for the numeraire good y A.6 . Because 1−σ < 0, this inequality traces a downward-sloping afford-
ability frontier in the (PB,PG)-plane. Holding the generic price fixed yields an upper bound for the branded
price,

PB ≤ Pmax
B (PG) :=

[
I 1−σ

LP

{
1− (PG/ILP)

1−σ fG
}/

fB

] 1
1−σ

,

and, symmetrically, fixing PB generates the ceiling Pmax
G (PB). A fall in income shifts the entire frontier

inward, so at least one posted price must fall (or effective prices must be lowered via insurance) to keep LP

A.5This occurs since η
Ck
E := ∂Ck

∂ ILP
· ILp

Ck
, from which ∂Ck

∂ ILP
=η

Ck
E · Ck

ILP
. Since drug consumption is a luxury for LP, η

Ck
E > 1 for k ∈{B,G},

η
Ck
E · Ck

ILP
> Ck

ILP
. The term Ck

ILP
represents the average consumption per unit of income for good k. If the income ILP decreases, the

proportional drop in Ck would match Ck
ILP

only if the income elasticity η
Ck
ILP

= 1, implying proportional responsiveness of consumption

to income. However, if η
Ck
ILP

> 1, the response of Ck to a change in income is more than proportional. From ∂Ck
∂ ILP

= η
Ck
ILP

· Ck
ILP

, we see

that ∂Ck
∂ ILP

> Ck
ILP

whenever η
Ck
ILP

> 1, meaning that a decrease in ILP results in a larger percentage drop in Ck than would occur with a

proportional relationship. For example, if ILP decreases by 10% and η
Ck
ILP

= 1.5, the consumption Ck decreases by 15%, which is larger

than the proportional decline. Thus, Ck decreases disproportionately with respect to ILP when η
Ck
ILP

> 1.
A.6In Appendix A we derive CES demands and expenditure shares for each drug k ∈ {B,G}:

Ck,ℓ =

(
Iℓ

P̃k,ℓ

)σ

fk(Uℓ), sk,ℓ ≡
P̃k,ℓCk,ℓ

Iℓ
=

(
P̃k,ℓ

Iℓ

)1−σ

fk(Uℓ).

These follow from the Lagrangian with the non-homothetic CES aggregator and the budget constraint. For the uninsured poor group
LP, P̃k,LP = Pk . Requiring that the consumer can still purchase some numeraire y (i.e., sy,LP ≥ 0) implies that the drug shares cannot
exhaust the budget: sB,LP + sG,LP ≤ 1. Substituting the share expressions yields(

PB

ILP

)1−σ

fB(ULP)+

(
PG

ILP

)1−σ

fG(ULP)≤ 1, σ > 1,

which is the “affordability frontier” already mentioned previously.
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inside its budget set while preserving the empirical ordering PB > PG.
The observations above let us define a feasibility and an inclusion regions. Namely, let the feasibility region

be defined as
F :=

{
(PB,PG) : PB ≥ cB,PG ≥ cG

}
Since our aim is to test if LP is excluded from the market after a GDP negative shock in prices, we need to

define what we mean by market exclusion. With the latter, in particular, we refer to the fact that LP is still
able to buy a non-negligible share of drugs, i.e. drugs receive at least a small budget share s ∈ (0,1).
The inclusion region for LP is thus the set under the frontier

ALP(s) :=

{
(PB,PG) :

(
PB

ILP

)1−σ

fB(ULP)+

(
PG

ILP

)1−σ

fG(ULP) ≥ s

}
.

where we notice that prices are effective since no insurance is applied to LP by assumption and total drug
share can’t exceed 1 (budget constraint). Since 1−σ < 0, the left-hand side is decreasing in each price, so
ALP(s) places upper bounds on posted prices (for LP posted and effective prices coincide). If ALP(s)∩F ̸=
∅, LP can be included with Pk ≥ ck; if ALP(s)∩F = ∅, posted-price inclusion is infeasible and inclusion
requires lowering LP’s effective prices via insurance or subsidies while maintaining Pk ≥ ck.
Because 1−σ < 0, ALP(·) is decreasing in each price, among all feasible (PB,PG) ∈ F , the largest value
of ALP occurs at the lowest feasible prices, i.e. at the boundary point (cB,cG). Hence, there exists at least
one feasible price pair that includes LP (i.e. ALP(s)∩F ̸= ∅) iff the boundary point itself satisfies the
inclusion inequality. Thus, if the inclusion inequality at the minimal feasible prices (PB = cB and PG = cG),
it fails everywhere in F . If instead it holds there, the intersection is nonempty. A convenient test, therefore,
evaluates inclusion at cost: (

cB

ILP

)1−σ

fB(ULP)+

(
cG

ILP

)1−σ

fG(ULP)
include
≷

exclude
s,

so that inclusion at (or above) cost is feasible iff the inequality holds with “≥”.

Consider now the proportional GDP decline for the poor group, I′LP
= θ ILP with 0 < θ < 1. Feasible posted-

price inclusion (at or above cost) is characterized by the inclusion-at-cost test evaluated at (cB,cG):(
cB

I′LP

)1−σ

fB(U ′
LP
) +

(
cG

I′LP

)1−σ

fG(U ′
LP
)

include
≷

exclude
s, σ > 1.

Two forces push the left-hand side downward after the shock: (i) lower income I′LP
, which tightens the

affordability term because 1−σ < 0, and (ii) non-homotheticity, which typically lowers the taste shifters
fk(U ′

LP
) as utility falls. Assumption T.6 explains this direction –pharmaceuticals behave as luxuries for LP.

Exclusion of LP arises only if the inequality fails, i.e. when the left-hand side drops below the concrete par-
ticipation threshold s. In short, T.6 provides the direction (the expression tends to fall after a negative income
shock), while the inequality provides the decision: inclusion remains feasible at posted prices Pk ≥ ck if and
only if the test holds with “≥”; otherwise, posted-price inclusion is infeasible and would require lowering
LP’s effective prices via insurance or subsidies. The Ramsey mechanism does not influence the inequality.
When we focus on the uninsured group LP (δl,k = 0), indeed, two things happen simultaneously: (i) the
insurance–distortion amplifier IDA becomes negligible, and (ii) the Hoffler–correction term Mδ

Hoffler-corrected
becomes small. Intuitively, the correction is meant to offset distortions created by subsidised demand inter-
actions across drugs. If a group receives no subsidy, it doesn’t generate that kind of distortion, so the planner
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has almost nothing to correct—hence the term collapses toward zero. Thus the Ramsey mechanism won’t
generate a special corrective discount for LP.

In short, in an economy where insurance is concentrated among the rich, a proportional GDP decline low-
ers the poor group’s affordability. If, at the new income, even pricing at marginal cost fails the inclusion
condition, then the poor group cannot be kept in via posted prices alone; Ramsey pricing does not supply a
corrective discount for the uninsured and may select higher prices, reinforcing the tendency toward exclu-
sion. Thus the shock favors exclusion but does not make it automatic unless the inclusion-at-cost inequality
fails.
By contrast, LR (the richer, insured group) is more profitable to target because their demand is less elastic
A.7 thanks to the mitigating effect of insurance, which reduces their effective price P̃k,l thus relaxing their
inclusion constraint. Formally, for a small participation threshold s ∈ (0,1) the LR inclusion set is

ALR(s) :=
{
(PB,PG) :

( (1−δB,LR )PB
ILR

)1−σ fB(ULR)+
( (1−δG,LR )PG

ILR

)1−σ fG(ULR)≥ s
}
,

Given ILR > ILP and δk,LR > 0 (with δk,LP ≃ 0), we typically have ALR(s) much larger than ALP(s). Hence,
there often exist uniform posted prices (PB,PG) that both satisfy the no-loss constraints (Pk ≥ ck) and lie
in ALR(s) but not in ALP(s). Participation of LR at such prices is therefore secured by affordability (lower
effective prices and higher income), not by regulatory favoritism; LP may self-exclude because its inclusion
set does not intersect the feasible set at those prices.
This phenomenon is widely discussed in the pharmaceutical-economics literature though–to the best of
our knowledge–rarely formalized within a unified Ramsey/NH–CES framework. Several studies document
that the poorest populations often lack affordability unless prices approach competitive production cost,
especially where insurance coverage is limited and inequality is high (Moon et al., 2011; Yadav, 2010b), so
large price cuts may leave their effective access essentially unchanged. This observation is consistent with
settings in which budget constraints dominate purchase decisions.
It is natural to ask whether this condition may be mitigated by Ramsey-pricing policies. Some theoretical
settings, however, show that negative Ramsey Lerner indexes (prices below marginal cost) may arise not in
an effort of the planner to accomodate the share of uninsured patients, rather due to the shape of specific
demand structures with particular cross-price interactions with the outside good (Bertoletti, 2018). In our
context, therefore, the uninsured poor group LP faces an affordability constraint (captured by the inclusion-
at-cost condition) rather than a Ramsey mechanism that pushes P < c. By contrast, for the richer, insured
group LR, higher income and lower effective prices via insurance relax the same inclusion constraint; uniform
posted prices that satisfy Pk ≥ck are thus more likely to be affordable for LR than for LP, without implying
any general guarantee on markups for LR.
Accordingly, we propose the following hypothesis:

Hypothesis 3 (H3): As a consequence of a negative GDP shock, if prices are set according to the Ramsey
rule, even though general price elasticities may increase, we do not expect significant changes in prices.

B Semenova et al. (2021)’s Setting and Major Results.
The aim of this section is to provide some basic understanding of Semenova et al. (2021) for the sake of the
preset work.

A.7The demand elasticity for LP and LR is given by η
Ck,l
P̃k,l

= −σ +(1−σ)η
f

Ul
where the income-dependent preference elasticity η

f
Ul

for LP is small, making their demand more price-sensitive. It is high for LR due to the mitigating effect of insurance.
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B.1 Identification with All Exogenous Covariates
We start with a general form equation:

Yit := β0(Xit ,Pit)+ e0(Xit)+ξ
E
i +Uit E[Uit |Pit ,Xit ,φit ] = 0 (B.1)

where φit is a filtration that consists of predetermined variables before t, i.e. φit = {(Xit ′ ,Pit ′ ,Yit ′)
t−1
t ′=1}.

Xit may include lags of Pit and Yit . as well as known functions of Mi := {Mit}T
t=1 representing a collec-

tion of fixed variables. For the moment, the variables are assumed to be exogenous. In this specifica-
tion β0(.) represents the CATE for changing from policy p1 to policy p0 since β0(Xit , p1)− β0(Xit , p0) =
E[Yit(p1)|Xit ]−E[Yit(p0)|Xit ]. In Semenova et al., 2021, β0(Xit ,Pit) is assumed to be well approximated by
a linear combination of Xit and Pit such that

β0(Xit ,Pit) = D′
itβ0 Dit := D(Xit ,Pit)

An example may be Dit := di0(Xit)+Vit , E[Vit |Xit ,Pit ] = 0. Hence substituting in Eq.(B.1) we obtain that

Yit = D′
itβ0 + e0(Xit)+ξ

E
i +Uit

Since E[Dit |Xit ,Φit ] := d0i(Xit) = d0(Xit ,ξi), ξ = (ξ1,ξ2, . . . ,ξN)
B.1, the unit specific treatment reduced

form can be written as

E[Yit |Xit ,Φit ] :=E[Dit |Xit ,Φit ]+ e0(Xit)+ξ
E
i =

= di0(Xit)
′
β0 + e0(Xit)+ξ

E
i =

= li0(Xit)

Hence, the treatment and outcome residuals are, by definition Vit = Dit − di0(Xit), Ỹit = Yit − li0(Xit). Re-
membering the definitions of Yit and E[Dit |Xit ,Φit ] and substituting them in the expression of Ỹit we obtain
that

Ỹit =V ′
itβ0 +Uit E[Uit |Xit ,Φit ,Vit ] = 0 (B.2)

Notice that the latter equation identifies β0 as the coefficient of the best linear approximation of Ỹit on
Vit since it represents an OLS coefficient (Semenova et al., 2021). For dealing with the unit fixed effects,
Semenova et al. (2021) adopt a FE approach assuming that the fixed-effects ξ E are weakly sparse. This
allows the use of regularization techniques to consistently estimate them and eliminating them. In order to
illustrate that the weak sparsity assumption is not restrictive, Semenova et al. (2021) modeled the unit fixed
effects in Mundlak styleB.2. The latter amounts to model

e0(Xit)+ξ
E
i = X ′

itδ
X
0 +M′

iδM0 +ξ
E
i︸ ︷︷ ︸

aE
i

where the key is that while xE
i is restricted to be weakly sparse, no restrictions are imposed to aE

i . Hence
weak sparsity assumption on ξ E

i is not binding. The same logic can be applied to the unit fixed effects
present in the treatment equation.
The estimation and inference strategy assumes that there is high-dimensional sparsity in the sense that d =
dim(Dit) = dim(β0) >> NT but only a number s << NT of them has non-zero effects, i.e. ||β0||0 = s. In
this case Semenova et al. (2021) build the following algorithm:

B.1Where ξi are fixed vectors of unit specific fixed effects.
B.2That is allowing for the inclusion of time averages of the covariates in the regression equation to account for unobserved hetero-

geneity coming from unit fixed effects.
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1. Estimate Ỹit and Vit using machine-learning (ML) with a specific form of cross-fitting when dealing
with panel data called NLO B.3 by the authors. The problem with panel data is that traditional cross-
fitting techniques do not guarantee a split into independent groups (regardless of whether the split is
done on the time or unit dimension). It is hence mandatory to device a cross fitting strategy that deals
with weakly dependent data.

2. Estimate the CATE function via Lasso penalized regression of estimated Ỹit (i.e. ˆ̃Yit ) and Vit (i.e. V̂it ).

3. Perform Gaussian inference using Debiased Lasso on classes of linear functionals of β0 of the CATE
function D′

itβ0.

In the first step of the algorithm, the residuals Ỹ it and Vit are estimated via NLO cross-fitting. Specifically
for each k, estimates of the reduced form of the residuals are computed using quasi-complementary blocks,
such that the following estimates are reached:

ˆ̃Yit := Yit − l̂ik(Xit), V̂it := Dit − δ̂ik(Xit)

In the second step, CATE functions are estimated via Orthogonal LASSO under Neyman Orthogonality.
Namely, let λB =Cβ

√
log(d)/NT B.4 and Cβ a penalty parameter. Then define

β̂L := argmin
β∈Rd

1
NT

N

∑
i=1

T

∑
t=1

( ˆ̃Yit −V̂itβ )
2 +λβ

d

∑
j=1

|β j|

which is shown to reach almost oracle rate of convergence for the CATE function.
The third step consists finally in describing a debiased inference method on parameters of CATE function.
Specifically, since the L1-shrinkage induces the well-known bias of penalized regression it is not possible
to run inference directly on β̂L based on standard Gaussian approximations. Thus, it is necessary to con-
struct another estimator –the debiased LASSO estimator– that allows for asymptotically normal confidence
intervals:

β̂DL := β̂L + Ω̂
CLIME 1

NT

N

∑
i=1

T

∑
t=1

V̂it(
ˆ̃Yit −V̂it β̂L)

where Ω̂CLIME is a symmetric approximation of the inverse Ω̂ of the sample covariance matrix of the
residuals: Q̂ := 1

NT ∑
N
i=1 ∑

T
t=1 V̂itV̂ ′

it . One of the main results of Semenova et al. (2021) is that
√

NT (β̂DL− β̂0)
is approximately N(0,Σ) which, along with the convergence rate of orthogonal LASSO serves as a proof of
identification for the case with only exogenous covariates.

C Reduced form of Eq.(17) and Eq.(18)
In what follows we will re-write Eq.(17) and Eq.(18) according to the simplified notation introduced in the
main text (Section 4.2.2).
To make the operator steps precise, we (i) work within a molecule and stack products so that st and pt

B.3In short, NLO builds quasi-complementary blocks. Say we have a partition [1, . . . ,T ] into adjacent blocks {M }K
k=1. the authors

then define N (k) as k and its immediate neighbors. Hence the quasi-complement of Mk , M QC
k = {M1,M2, . . . ,MK} \ {M j : l ∈

N (k)}, where "\" denotes the exception sign. The corresponding blocks are Bk := {W.,t : t ∈ Mk} and BQC
k := {W.,t : t ∈ M QC

k }
where W.,t is the data vector at all units at time t.

B.4See Semenova et al. (2021) for details
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are n× 1 vectors, (ii) use the lag operator L with Lℓxt = xt−ℓ, (iii) define degree–48 lag polynomials with
no contemporaneous term αS(L) := ∑

48
ℓ=1 αS,ℓLℓ and αP(L) := ∑

48
ℓ=1 αP,ℓLℓ, and (iv) let D(Kt) be the n× n

diagonal matrix with the observed vector Kt on the diagonal; writing b0 for the contemporaneous price
coefficient and bK for the coefficient on the interaction Kt ◦ pt , the stacked sales equation is

st = b0 pt + bK D(Kt) pt + αP(L) pt + αS(L)st + Ut ,

so that, after collecting terms in st and premultiplying by the inverse operator (which exists under the usual
stability condition on αS(L)),

(I −αS(L))st =
[
b0I +bKD(Kt)+αP(L)

]
pt + Ut =⇒

st = (I −αS(L))−1[b0I +bKD(Kt)+αP(L)
]︸ ︷︷ ︸

:=ϒ0(L,t)

pt + (I −αS(L))−1︸ ︷︷ ︸
:=ϒU (L)

Ut .

For prices, start from the 48–lag reduced form pt = ϕ(L) pt +Vt with ϕ(L) := ∑
48
ℓ=1 ϕℓLℓ (no contempora-

neous term); then pt = (I −ϕ(L))−1Vt =: ϒ1(L)Vt . Substituting pt = ϒ1(L)Vt into the sales equation yields
the reduced form stated in the main text with the correct error filtering:

st = ϒ0(L, t)ϒ1(L)Vt + ϒU (L)Ut ,

that is, the “system” operator ϒ0(L, t) multiplies pt (and hence Vt through ϒ1), while the disturbance is
transformed only by (I−αS(L))−1. Briefly: αS(L) and αP(L) are degree–48 lag polynomials; (I−αS(L))−1

filters both the regressors block and the error, and the price process is solved by its own inverse operator
before substitution.

D Within-Country Analysis
Figure D.1 provides within-country analysis of the relation between the price elasticities of molecules and
molecule prices, while it also displays a cross-country comparison. Each subgraph shows the prediction for
the price elasticities of molecules available in the country in question from a linear regression of price elastic-
ities on average prices (log) at the molecule level. The results exhibit some degree of variation. Algeria and
Turkey have a somewhat strong positive slope, indicating an inverse relation between price elasticities and
price. Netherlands, Russia, Slovenia and the USA show a rather neutral relation between price elasticities
and prices. Austria, Australia, Hungary, Italy, Portugal, and Slovakia have a clear negative slope, meaning
that pharmaceutical prices at the molecule level do not inversely vary with price elasticities. Overall, Figure
D.1 provides moderate evidence on the non-existence of within-country Ramsey pricing at the molecule
level in many national pharmaceutical markets. Country-wise differences in pharmaceutical markets can be
addressed by appropriate consideration of various determinants including national health systems, insurance
coverage, availability of generic products, reference pricing, and parallel trade.

We will here derive also the theoretical results in the main text referring to the within country analysis.
In particular we will compute the exact derivatives from the linearized Ramsey price equation (6).
Write

pi = MCi

[
1−DRi −CIi

]
, DRi :=

λ

1+λ
· 1

epii
, CIi := ∑

j ̸=i
M j

ep ji

epii

q j

qi

p j

pi
.
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Fix i and consider a cross–elasticity epki with k ̸= i. Differentiating pi with respect to epki and using the
product/chain rules yields

∂ pi

∂epki
=−MCi

(
∂DRi

∂epki︸ ︷︷ ︸
=0

+
∂CIi

∂epki
+

∂CIi

∂ pi
· ∂ pi

∂epki

)
.

Hence, collecting all the ∂ pi
∂epki

terms on the left hand side, we have:

∂ pi

∂epki

[
1+MCi

∂CIi

∂ pi

]
=−MCi

∂CIi

∂epki
.

The two partial derivatives inside are

∂CIi

∂epki
= Mk

1
epii

qk

qi

pk

pi
,

∂CIi

∂ pi
=−∑

j ̸=i
M j

ep ji

epii

q j

qi

p j

p2
i
.

Substituting and solving for ∂ pi/∂epki gives the exact linearized derivative:

∂ pi

∂epki
=

−MCi Mk
1

epii

qk

qi

pk

pi

1−MCi ∑
j ̸=i

M j
ep ji

epii

q j

qi

p j

p2
i

. (D.1)

An analogous expression holds for any ep ji with j ̸= i:

∂ pi

∂ep ji
=

−MCi M j
1

epii

q j

qi

p j

pi

1−MCi ∑
ℓ̸=i

Mℓ
epℓi
epii

qℓ
qi

pℓ
p2

i

. (D.2)

These formulas are exact conditional on the linearized price equation pi =MCi[1−(DRi+CIi)] and capture
the implicit feedback through the pi-dependence of CIi via the term p j/pi. For substitutes (ep ji > 0 for all
relevant j), the numerator in (D.1) is positive because epii < 0, and the denominator exceeds zero for small
interaction terms, implying ∂ pi/∂epki > 0.
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Figure D.1. Relationship Between Price Elasticities and Price of Molecules by Country

Figure D.2 restricts the within-country analysis to generics. Figure D.2, in particular, shows that the
well-known inverse elasticity rule holds in national pharmaceutical markets; thus, confirming the presence
of a Ramsey pricing within-country for generic products. Unlike the full range of pharmaceutical products
(Figure D.1), each sub-graph exhibits a clear positive slope, indicating a strong negative relationship between
price elasticity and the price of generics in each national market.
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Figure D.2. Price Elasticities by Molecule-Country Pairs for Generic Pharmaceuticals

D.1 Generic vs branded within country comparison
Let’s compare how much within-generics cross-price elasticities move generic prices versus how much
within-brands cross elasticities move branded prices.
We know from above that for a focal product i and a rival ℓ ̸= i:

∂ pi

∂epℓi
=

−MCi Mℓ
1

epii

qℓ
qi

pℓ
pi

1−MCi ∑
m̸=i

Mm
epmi

epii

qm

qi

pm

p2
i

=:
−MCi Mℓ

1
epii

qℓ
qi

pℓ
pi

Di
. (D.3)

Assume substitutes: epii < 0 and epℓi > 0. Then Di > 1 and, after putting the absolute values,

∂ pi

∂epℓi
=

MCi

|epii|
Mℓ

Di

qℓ
qi

pℓ
pi
. (D.4)

For convenience (since many terms simplify), let us now define a unit-free normalized sensitivity as follows:

S(ℓ→i)
i :=

|epii|
MCi

qi

qℓ

pi

pℓ

∂ pi

∂epℓi
. (D.5)
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Plug now (D.4) into (D.5):

S(ℓ→i)
i =

(
|epii|
MCi

)(
qi

qℓ

)(
pi

pℓ

)[
MCi

|epii|
Mℓ

Di

qℓ
qi

pℓ
pi

]
=

|epii|
MCi

· MCi

|epii|︸ ︷︷ ︸
=1

qi

qℓ
· qℓ

qi︸ ︷︷ ︸
=1

pi

pℓ
· pℓ

pi︸ ︷︷ ︸
=1

·Mℓ

Di
=

Mℓ

Di
. (D.6)

Thus, conveniently, the normalized effect of a rival ℓ on the focal i depends only on the rival’s markup Mℓ

and the focal-good feedback factor Di.
We are now ready to aggregate within category (branded-generic). For a focal generic i = G (with rivals
k ∈ G ′) and a focal brand i = B (with rivals j ∈ B′):

SG := ∑
k∈G ′

S(k→G)
G = ∑

k∈G ′

Mk

DG
=

∑k∈G ′ Mk

DG
, SB := ∑

j∈B′
S( j→B)

B =
∑ j∈B′ M j

DB
. (D.7)

the idea is that SG ( SB) describes how strongly other generics (branded) –not the focal one– can move the
generic (branded)’s price through cross-substitution, after stripping out size/units effects. It is therefore easy
to see that generics’ cross-elasticities matter more for generic prices than brands’ cross-elasticities matter
for brand prices iff

SG > SB ⇐⇒ ∑k∈G ′ Mk

DG
>

∑ j∈B′ M j

DB
⇐⇒ ∑k∈G ′ Mk

∑ j∈B′ M j
>

DG

DB
. (D.8)

where Di can be recovered from (D.3) as:

Di = 1−MCi ∑
m̸=i

Mm
epmi

epii

qm

qi

pm

p2
i
= 1+MCi ∑

m̸=i
Mm

|epmi|
|epii|

qm

qi

pm

p2
i

> 1. (D.9)

=: 1+MCi Ki, Ki := ∑
m̸=i

Mm
|epmi|
|epii|

qm

qi

pm

p2
i
. (D.10)

The bigger Di is, the harder it is for a change in elasticities to move product i’s price (because Di is at the
denominator of Si). Higher MCi and stronger substitution into i (larger Ki) make Di larger, which dampens
the price response.
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E Analysis for High Income Countries and Middle-Low Income Coun-
tries

This section reproduces the analysis of subsection 4.3.2 and 4.3.3 by focusing separately on HIC and MLIC.

((a)) ((b))

Figure E.1. Relationship Between Price Elasticities and Price (a) and GDP Per Capita (PPP) Income
(b) for High Income Countries (HIC)

((a)) ((b))

Figure E.2. Relationship Between Price Elasticities and Price (a) and GDP Per Capita (PPP) Income
(b) for Middle and Low Income Countries (MLIC)
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E.1 Generics

((a)) ((b))

Figure E.3. Generic Pharmaceuticals: Relationship Between Price Elasticities and Price (a) and GDP
Per Capita (PPP) Income (b) for High Income Countries (HIC)

((a)) ((b))

Figure E.4. Generic Pharmaceuticals: Relationship Between Price Elasticities and Price (a) and GDP
Per Capita (PPP) Income (b) for Middle and Low Income Countries (MLIC)
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F Different Second Stage Models
As a robustness check, we analyse if the price elasticity estimates are robust to different second-stage model
choices. Figure F.1 displays the results.

((a))

((b))

Figure F.1. Different Second Stage Models
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Following Semenova et al. (2021), we estimate heterogeneous elasticities with three distinct methods:
cross-validated Lasso (first panel), Debiased Lasso (middle panel) and OLS (last panel). Each point on
the histograms represents one panel unit, i.e. country-molecule pair. Each bar is a collection of estimated
price elasticities for country-molecule pairs. Consequently, pairs located in the same vertical bin have the
same or very close estimated elasticities. Y-axis indicates how many times a particular elasticity value is
estimated. The total number of estimated price elasticities is 1122 (33x34), which is the number of units, i.e.
molecule-country pairs.

Figures F.1(a) and F.1(b) differ between each other due to the grouping level. Figure F.1 colours elasticity
estimates at the country level, while Figure F.1 colours at the molecule level to display the heterogeneity of
elasticity estimates in both levels. The results show that OLS and Debiased Lasso methods produce the same
results. Cross-validated Lasso produces slightly different results, while the overall picture does not change.
The results are pretty robust to different model choices.

G Placebo Test
We introduce a placebo test to examine the effectiveness of the DML algorithm employed to estimate the
price elasticities of demand. Specifically, we randomize the input data and re-estimate own and cross price
elasticities to show that the algorithm does not produce spurious results.

As the first step, we construct the placebo data set by including molecules serving different needs (un-
related ATCs) and countries that are relatively unrelated in terms of complexity pattern (Albeaik et al.,
2017)(e.g. Germany and Ecuador). As the second step, we perform randomization to re-assign the standard
units of different molecules in different countries. Starting from the original database, we make a permuta-
tion of the standard units at the molecule and country levels. In this way, we associate the standard units of
molecule G in country c to the standard units of molecule j in country k. The randomization step ensures
the absence of any relationship between the movements of the prices. Therefore, it is reasonable to expect
mostly insignificant elasticity estimates. Finally, we apply the DDML algorithm to the placebo data set.
Figure G.1 displays the results. To facilitate the visualization, we report the matrix of molecules’ elasticities
(E ∈ Rm×m) in the form of heat map. By construction, the diagonal elements ei,i of E represent own-price
elasticities, whereas non-diagonal elements ei, j, i ̸= j represent the cross price elasticity of i with respect to
j. More formally:

Ei, j :=

{
Own-elasticity , if i = j ,
Cross-elasticity , otherwise .

Zero values have been set to black (NaN). The results show that the 96% of the elasticity estimates are not
significantly different from zero when countries with no relevant trade relationship have interacted with each
other (both on the main diagonal, i.e. own elasticities, and outside-of-diagonal, i.e. cross elasticities).

The placebo test has been repeated for several country pairs, yielding very similar results. For the sake
of brevity, we only report the results for Germany and Ecuador.
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Figure G.1. Heat Map of Placebo Price Elasticities Between the Molecules of Ecuador and Germany
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H Fixed Effects for Table 1

Table H.1. Within-Between estimation (own elasticity)

All Products Generics
(1) (2) (3) (4)

Within Between Within Between

ALGERIA (comparison category) . . . .
(.) (.) (.) (.)

AUSTRALIA 1.1100*** . 0.3848 .
(0.3191) . (0.2955) .

AUSTRIA 1.3030*** . 0.7831*** .
(0.3191) . (0.2787) .

BELGIUM 1.1109*** . 0.9434*** .
(0.3191) . (0.3435) .

BULGARIA 0.8084** . 0.0174 .
(0.3191) . (0.2954) .

CANADA 1.1784*** . 1.3486*** .
(0.3191) . (0.2953) .

CHINA 0.7809** . 0.0611 .
(0.3191) . (0.3473) .

COLOMBIA 0.7575** . 0.3871 .
(0.3191) . (0.3515) .

CROATIA 0.9322*** . 1.0023*** .
(0.3191) . (0.3434) .

DENMARK 0.8647*** . 0.4899 .
(0.3191) . (0.3436) .

EGYPT -0.5014 . -0.2894 .
(0.3191) . (0.2785) .

FINLAND 1.0425*** . 1.0209*** .
(0.3191) . (0.2700) .

FRANCE 1.1682*** . 0.5043* .
(0.3191) . (0.2999) .

GERMANY 0.7846** . 0.5879** .
(0.3191) . (0.2965) .

GREECE 0.8644*** . 1.1776*** .
(0.3191) . (0.3515) .

HUNGARY 0.5413* . 0.9074*** .
(0.3191) . (0.2966) .

INDIA -0.8518*** . -1.1618*** .
(0.3194) . (0.2779) .

IRELAND 1.3452*** . 1.3819*** .
(0.3192) . (0.3439) .

ITALY 1.1091*** . 0.8840*** .
(0.3191) . (0.2953) .

JAPAN 1.3514*** . -0.0013 .
(0.3191) . (0.2791) .

NETHERLANDS 0.7016** . 0.4720* .
(0.3191) . (0.2411) .

POLAND 0.5686* . 0.2470 .
(0.3191) . (0.3434) .

PORTUGAL 0.8222** . 0.8296** .
(0.3191) . (0.3434) .

ROMANIA 0.5216 . 0.2730 .
(0.3191) . (0.3332) .

RUSSIA -0.3024 . -0.5534** .
(0.3191) . (0.2699) .

SERBIA 0.5226 . 0.5841* .
(0.3191) . (0.3473) .

SLOVAKIA 0.8087** . 0.4380 .
(0.3191) . (0.3473) .

SLOVENIA 1.0896*** . 1.0800*** .
(0.3191) . (0.3515) .

SPAIN 0.5525* . 0.4592 .
(0.3191) . (0.3473) .

SWEDEN 0.6392** . 1.2756*** .
(0.3191) . (0.2953) .

TURKEY -0.7319** . -0.9302*** .
(0.3191) . (0.2975) .

UK 0.5725* . 0.4611* .
(0.3191) . (0.2143) .

USA 1.4691*** . 0.5812*** .
(0.3192) . (0.1434)

Country Fixed Effects for Table 1: It is observed, as anticipated, that countries with a high GDP exert the most significant effects,
exhibiting an average price higher than that of other countries. This observation aligns with our previous descriptive findings
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Online Appendix

A Technical details for the case DR+CI < 1

A.1 Computations for case (ii)
Case 1: Generic Drug (i is generic, k ∈ G ′). We consider the effect of the cross-price elasticity epki on
the price pi of a generic drug i. The relevant term in the pricing formula is

Tk = Mk ·
epki

epii
· qk

qi
· pk

pi

which appears inside the summation. Differentiating the price equation with respect to epki, we obtain

∂ pi

∂epki
=−MCi ·

∂

∂epki

(
Mk ·

epki

epii
· qk

qi
· pk

pi

)

=−MCi ·Mk ·
1

epii
· qk

qi
· pk

pi
+MCi ·Mk ·

epki

epii
· qk

qi
· pk

p2
i
· ∂ pi

∂epki

Solving for the derivative yields:

∂ pi

∂epki
=

−MCi ·Mk · 1
epii

· qk
qi
· pk

pi

1−MCi ·Mk · epki
epii

· qk
qi
· pk

p2
i

Case 2: Branded Drug (i is branded, j ∈ B, j ̸= i). We now consider the effect of the cross-price elas-
ticity ep ji on the price pi of a branded drug i. The relevant term is

Tj = M j ·
ep ji

epii
·

q j

qi
·

p j

pi

Differentiating the price expression with respect to ep ji gives:

∂ pi

∂ep ji
=−MCi ·

∂

∂ep ji

(
M j ·

ep ji

epii
·

q j

qi
·

p j

pi

)

=−MCi ·M j ·
1

epii
·

q j

qi
·

p j

pi
+MCi ·M j ·

ep ji

epii
·

q j

qi
·

p j

p2
i
· ∂ pi

∂ep ji

Solving for the derivative, we find:

∂ pi

∂ep ji
=

−MCi ·M j · 1
epii

· q j
qi
· p j

pi

1−MCi ·M j ·
ep ji
epii

· q j
qi
· p j

p2
i
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